Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Plant Protection Research

The Journal of Polish Society of Plant Protection, Committee of Plant Protection; Polish Academy of Sciences, Institute of Plant Protection – National Research Institute

4 Issues per year

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.332
Source Normalized Impact per Paper (SNIP) 2016: 0.829

Open Access
See all formats and pricing
More options …
Volume 54, Issue 1


Effect of Septoria Leaf Blotch and its Control with Commercial Fungicides, on arbuscular-mycorrhizal-Fungal Colonization, Spore Numbers, and morphotype Diversity

Santiago Schalamuk
  • Corresponding author
  • Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119 (1900), La Plata, Buenos Aires, Argentina / Consejo National de Investigaciones Cientificas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ), Buenos Aires, Argentina / CEQUINOR (CCT-La Plata-CONICET-UNLP), 47 y 115 (1900), La Plata, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvana Velazquez
  • Consejo National de Investigaciones Cientificas y Técnicas (CONICET), Rivadavia 1917, (C1033AAJ), Buenos Aires, Argentina / CEQUINOR (CCT-La Plata-CONICET-UNLP), 47 y 115 (1900), La Plata, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María Rosa Simón
  • Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119 (1900), La Plata, Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Cabello
  • Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, UNLP, 53 # 477 (1900), La Plata, Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-12 | DOI: https://doi.org/10.2478/jppr-2014-0002


Arbuscular-mycorrhizal internal structures (i.e. total root colonization, arbuscules, vesicles) and external structures (i.e. spore density), and Glomeromycota spore morphotypes, were evaluated in wheat severely infected with Mycosphaerella graminicola - the causal agent of Septoria leaf blotch. Plots in which the infection was controlled with a commercial fungicide at recommended field doses, were also examined. The commercial fungicide used was an admixture of trifloxistrobin and tebuconazole. No negative effects of the fungicide application on arbuscular-mycorrhizal fungi (AMF) were found. The M. graminicola fungicidal treatment actually favoured the formation of arbuscules and AMF spores, as there was a selective increase in the density of spores belonging to the glomoid morphotype. Arbuscular-mycorrhizal fungi have an absolute dependence on the carbon provided by the plant. A severe foliar disease leading to a diminished carbon supply to the roots would generate decreases in carbon availability. Such decreases would strongly affect mycorrhizal associations and development. Furthermore, the change in the green-leaf area produced by a severe foliar disease and/or a reversal of that condition through fungicide treatment could result in shifts in the composition of the AMF community so as to favour glomoid morphotypes. Glomoid species have been previously considered as r-strategists

Keywords: Glomeromycota; Mycosphaerella graminicola; strobilurin; triazole; wheat


  • Bever J.D., Schultz P.A., Pringle A., Morton J.B. 2001. Arbuscular mycorrhizal fungi: More diverse than meets the eye, and the ecological tale of why. Bioscience 51 (11): 923-931.CrossrefGoogle Scholar

  • Błaszkowski J., Kovács G.M., Balázs T. 2009. Glomus perpusillum, a new arbuscular mycorrhizal fungus. Mycologia 101 (2): 247-255.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Calonne M., Lounès-Hadj Sahraoui A., Campagnac E., Debiane D., Laruelle F., Grandmougin-Ferjani A., Fontaine J. 2012. Propiconazole inhibits the sterol 14α-demethylase in Glomus irregulare like in phytopathogenic fungi. Chemosphere 87 (4): 376-383.CrossrefWeb of ScienceGoogle Scholar

  • Campagnac E., Fontaine J., Lounès-Hadj Sahraoui A., Laruelle F., Durand R., Grandmougin-Ferjani A. 2008. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry 69 (17): 2912-2919.CrossrefWeb of ScienceGoogle Scholar

  • Campagnac E., Fontaine J., Lounès-Hadj Sahraoui A., Laruelle F., Durand R., Grandmougin-Ferjani A. 2009. Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 19 (6): 365-374.CrossrefWeb of ScienceGoogle Scholar

  • Chagnon P., Bradley R., Maherali H., Klironomos J. 2013. A traitbased framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18 (9): 484-491.Web of ScienceCrossrefGoogle Scholar

  • Denison F.R., Kiers E.T. 2011. Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr. Biol. 21 (18): 775-785.Web of ScienceCrossrefGoogle Scholar

  • De Souza F.A., Declerck S., Smit E., Kowalchuk G.A. 2005. Morphological, ontogenetic and molecular characterization of Scutellospora reticulata (Glomeromycota). Mycol. Res. 109 (6): 697-706.PubMedCrossrefGoogle Scholar

  • Dick R.P., Thomas D.R., Turco R.F. 1996. Standarized methods, sampling and sampling treatment. p. 107-121. In: “Methods for Assessing Soil Quality” (J.W. Doran, A.J. Jones, eds.). Soil Science Society of America, Madison, Wisconsin, 410 pp.Google Scholar

  • Diedhiou P.M., Oerke E.C., Dehne H.W. 2004. Effect of the strobilurin fungicides azoxystrobin and kresoximmethyl on arbuscular mycorrhizal. J. Plant Dis. Prot. 111 (6): 545-556.Google Scholar

  • Eyal Z., Scharen A.L., Huffman M.D., Prescott J.M. 1985. Global insights into virulence frequencies of Mycosphaerella graminicola. Phytopathology 75 (12): 1456-1462.CrossrefGoogle Scholar

  • Eyal Z., Scharen A.L., Prescott J.M., Van Ginkel M. 1987. The Septoria Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT, Mexico, DF, 52 pp.Google Scholar

  • Franke-Snyder M., Douds D.D.J., Galvez L., Philips J.G., Wagoner P., Drinkwater L., Morton J.B. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania. Appl. Soil Ecol. 16 (1): 35-48.CrossrefGoogle Scholar

  • Frey B., Vilarino A., Schuepp H., Arines J. 1994. Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol. Biochem. 26 (6): 711-717.CrossrefGoogle Scholar

  • GenStat Release 12.1 ( PC/Windows XP). 2009. VSN International Ltd.Google Scholar

  • Gerdemann J.W., Nicolson T.H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46 (2): 235-244.CrossrefGoogle Scholar

  • Giovannetti M., Turrini A., Strani P., Sbrana C., Avio L., Pietrangeli B. 2006. Mycorrhizal fungi in ecotoxicological studies: soil impact of fungicides, insecticides and herbicides. Prevention Today 2 (1-2): 47-61.Google Scholar

  • Hodge A., Helgason T., Fitter A.H. 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3 (4): 267-273.Web of ScienceCrossrefGoogle Scholar

  • Homdork S., Fehrmann H., Beck R. 2000. Effects of field application of tebuconazole on yield, yield components and the mycotoxin content of Fusarium-infected wheat grain. J. Phytopathol. 148 (1): 1-6.CrossrefGoogle Scholar

  • Ijdo M., Schtickzelle N., Cranenbrouck S., Declerck S. 2010. Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol. Ecol. 72 (1): 114-122.Web of ScienceCrossrefPubMedGoogle Scholar

  • Kjoller R., Rosendahl S. 2000. Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phos phatase activity of external and internal hyphae. Biol. Fertil. Soils 31 (5): 361-365.Google Scholar

  • Koske R.E., Tessier B. 1983. A convenient, permanent slide mounting medium. Mycol. Soc. Am. Newsl. 34 (2): 59.Google Scholar

  • Land S., von Alten H., Schonbeck F. 1993. The influence of host plant, nitrogen fertilization and fungicide application on the abundance and seasonal dynamics of vesiculararbuscular mycorrhizal fungi in arable soils of northern Germany. Mycorrhiza 2 (4): 157-166.CrossrefGoogle Scholar

  • Lovelock C.E., Andersen K., Morton J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135 (2): 268-279.PubMedGoogle Scholar

  • McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A. 1990. A new method which gives an objective measure of colonization of roots by vesicular - arbuscular mycorrhizal fungi. New Phytol. 115 (3): 495-501.CrossrefGoogle Scholar

  • Mohammad M.J., Pan W.L., Kennedy A.C. 1998. Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 8 (3): 139-144.Google Scholar

  • Mojerlou S., Safaie N., Alizadeh A., Khelghatibana F. 2009. Measuring and modeling crop loss of wheat caused by Septoria leaf blotch in seven cultivars and lines in Iran. J. Plant Prot. Res. 49 (3): 257-262.Google Scholar

  • Morton J.B., Bentivenga S.P., Wheeler W.W. 1993. Germ plasm in the International Collection of Arbuscular and Vesiculararbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48 (2): 491-528.Google Scholar

  • Oehl F., Sieverding E., Palenzuela J., Ineichen K., Alves da Silva G. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2 (2): 191-199.Google Scholar

  • Parvartha Reddy P. 2013. Recent Advances in Crop Protection. Springer, India, 278 pp.Google Scholar

  • Phillips J.M., Hayman D.S. 1970. Improved procedures for clearing roots and staining parasitic and VA mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55 (1): 158-161.CrossrefGoogle Scholar

  • Pozo M.J., Verhage A., García-Andrade J., García J.M., Azcón- Aguilar C. 2009. Priming plant defense against pathogens by arbuscular mycorrhizal fungi. p. 123-136. In: “Mycorrhizas - Functional Processes and Ecological Impact” (C. Azcón-Aguilar, J.M. Barea, S. Gianinazzi, V. Gianinazzi- Pearson, eds.). Springer Verlag, Berlin, 372 pp.Google Scholar

  • Schalamuk S., Cabello M. 2010. Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102 (2): 261-268.Web of ScienceCrossrefPubMedGoogle Scholar

  • Schalamuk S., Velázquez S., Chidichimo H., Cabello M. 2004. Effect of no-till and conventional tillage on mycorrhizal colonization in spring wheat. Bol. Soc. Argent. Bot. 39 (1-2): 13-20.Google Scholar

  • Schalamuk S., Velázquez S., Chidichimo H., Cabello M. 2006. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effect of tillage. Mycologia 98 (1): 22-28.Google Scholar

  • Schmitz O., Danneberg G., Hundeshagen B., Klingner A., Bothe H. 1992. Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J. Plant Physiol. 139 (1): 106-114.Google Scholar

  • Schüβler A., Schwarzott D., Walker C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 (12): 1413-1421.CrossrefGoogle Scholar

  • Schüβler A., Walker C. 2010. The Glomeromycota: a species list with new families and new genera. Edinburgh and Kew. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. http://www.amf-phylogeny.com [Accessed: October 21, 2013].Google Scholar

  • Schweiger P.F., Jakobsen I. 1998. Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biol. Biochem. 30 (10-11): 1415-1422.CrossrefGoogle Scholar

  • Shaner G., Finney R.E. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67 (8): 1051-1056.CrossrefGoogle Scholar

  • Sieverding E. 1991. Vesicular-Arbuscular Mycorrhiza Management in Tropical Agro-Ecosystem. Deutsche Gesellschaft für Technische Zusammenarbeit, Eschborn, 371 pp.Google Scholar

  • Simón M.R., Perelló A.E., Cordo C.A., Struik P.C. 2002. Influence of Septoria tritici on yield, yield components, and test weight of wheat under two nitrogen fertilization conditions. Crop Sci. 45 (6): 1974-1981.CrossrefGoogle Scholar

  • Simón M.R., Cordo C.A., Perello A.E., Struik P.C. 2003. Influence of nitrogen supply on the susceptibility of wheat to Septoria tritici. J. Phytopathol. 151 (5): 283-289.CrossrefGoogle Scholar

  • Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. 3rd ed. Academic Press, London, 800 pp.Google Scholar

  • Verbruggen E., Kiers E.T. 2010. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Appl. 3 (5-6): 547-560.Web of ScienceCrossrefGoogle Scholar

  • Verbruggen E., Veresoglou S.D., Anderson I.C., Caruso T., Hammer E.C., Kohler J., Rillig M.C. 2013. Arbuscular mycorrhizal fungi-short-term liability but long-term benefits for soil carbon storage? New Phytol. 197 (2): 366-368.CrossrefPubMedGoogle Scholar

  • Walker C., Mize W., McNabb H.S. 1982. Populations of endogonaceous fungi at two populations in central Iowa. Can. J. Bot. 60 (12): 2518-2529.CrossrefGoogle Scholar

  • Whipps J.M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens Can. J. Bot. 82 (8): 1198-1227.Google Scholar

  • Zadoks J.C., Chang T., Konzak C.F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14 (6): 415-421.CrossrefGoogle Scholar

  • Zocco D., Fontaine J., Lozanova E., Renard L., Bivort C., Durand R., Grandmougin-Ferjani A., Declerck S. 2008. Influence of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol. Res. 112 (5): 592-601. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-04-12

Published in Print: 2014-01-01

Citation Information: Journal of Plant Protection Research, Volume 54, Issue 1, Pages 9–14, ISSN (Online) 1899-007X, ISSN (Print) 1427-4345, DOI: https://doi.org/10.2478/jppr-2014-0002.

Export Citation

© by Santiago Schalamuk. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Amália A. B. Campos, Juliana C. Scotton, Wesley L. F. Costa, Valdionei Giassi, Diego F. P. Pinto, and Sergio K. Homma
Revista Brasileira de Engenharia Agrícola e Ambiental, 2015, Volume 19, Number 9, Page 898
Anna Wenda-Piesik, Grzegorz Lemańczyk, Dariusz Pańka, and Dariusz Piesik
Journal of Plant Diseases and Protection, 2016, Volume 123, Number 1, Page 3
Romina P. Gomez, Mónica B. Aulicino, Cecilia I. Mónaco, Natalia Kripelz, and Cristina A. Cordo
Spanish Journal of Agricultural Research, 2015, Volume 13, Number 2, Page e1102

Comments (0)

Please log in or register to comment.
Log in