Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Plant Protection Research

The Journal of Polish Society of Plant Protection, Committee of Plant Protection; Polish Academy of Sciences, Institute of Plant Protection – National Research Institute

4 Issues per year

CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.332
Source Normalized Impact per Paper (SNIP) 2016: 0.829

Open Access
See all formats and pricing
More options …
Volume 56, Issue 2


Fungal pathogens and antagonists in root-soil zone in organic and integrated systems of potato production

Leszek Lenc
  • Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego 20, 85-225 Bydgoszcz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hanna Kwaśna
  • Corresponding author
  • Department of Forest Pathology, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Jeske
  • Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego 20, 85-225 Bydgoszcz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Jończyk
  • Institute of Soil Science and Plant Cultivation (IUNG) State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Czesław Sadowski
  • Department of Phytopathology and Molecular Mycology, University of Technology and Life Sciences, Kordeckiego 20, 85-225 Bydgoszcz, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-08 | DOI: https://doi.org/10.1515/jppr-2016-0029


Occurrence of culturable Fungi and Oomycota in root-soil habitat of potato cv. Owacja in organic and integrated production systems at Osiny (northern Poland) was compared in 2008-2010. The densities of both pathogens were significantly greater in the organic system. The eudominant fungal taxa (with frequency > 10% in at least one habitat) included species of Fusarium + Gibberella + Haematonectria, Penicillium, Phoma and Trichoderma. The dominant taxa (with frequency 5-10%) included species from 13 genera. In the rhizoplane, rhizosphere and non-rhizosphere soil, the total density of potential pathogens was greater in the integrated system, and of potential antagonists in the organic system. Among eudominant and dominant pathogens, Fusarium oxysporum and Gibellulopsis nigrescens occurred at greater density in the integrated system and Haematonectria haematococca and Phoma spp. in the organic system. Among eudominant antagonists, Trichoderma species occurred at greater density in the organic system. The organic system provided more disease suppressive habitat than the integrated system. The occurrence of brown leaf spot and potato blight was however similar in both systems. The mean yield of organic potatoes (24.9 t · ha-1) was higher than the mean organic potato yield in Poland (21.0 t · ha-1) and similar to the mean in other European countries (Germany 25.1 t · ha-1, Great Britain 25.0 t · ha-1). The organic system, based on a 5-year rotation, with narrow-leafed lupin, white mustard and buckwheat as a cover crop, inorganic fertilization based on ground rock phosphate + potassium sulphate, and biological and chemical control of insects and diseases (Bacillus thuringiensis ssp. tenebrionis + copper hydroxide + copper oxychloride), may be recommended for use in central Europe.

Keywords: biological control; cropping system; culturable Fungi and Oomycota; potato


  • Abawi G.S., Widmer T.L. 2000. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology 15 (1): 37-47.CrossrefGoogle Scholar

  • Alabouvette C., Hoeper H., Lemanceau P., Steinberg C. 1996. Soil suppressiveness to diseases induced by soilborne plant pathogens. p. 371-413. In: “Soil Biochemistry”. Vol. 9 (G. Stotzky, J.M. Bollag, eds.). Marcell Dekker, New York, USA, 568 pp.Google Scholar

  • Alexander M. 1977. Introduction to Soil Microbiology. Wiley, New York, 467 pp.Google Scholar

  • Anonymous 2007. Potatoes - conventional, IPM and organic systems in Europe. Pesticides News 75: 18-22.Google Scholar

  • Anonymous 2014. FAOSTAT (Food and Agriculture Organization of the United Nations). Available on: faostat.fao.org [Accessed: May 20, 2015]Google Scholar

  • Anonymous 2015. List of potato diseases. Available on: http://en.wikipedia.org/wiki/List_of_potato_diseases [Accessed: September 3, 2015]Google Scholar

  • Bååth E., Anderson T.-H. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFAbased techniques. Soil Biology and Biochemistry 35 (7): 955-963.Google Scholar

  • Bardgett R.D., Mawdsley J.L., Edwards S., Hobbs P.J., Rodwell J.S., Davies W.J. 1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Functional Ecology 13 (5): 650-660.CrossrefGoogle Scholar

  • Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17 (8): 478-486.CrossrefGoogle Scholar

  • Bittman S., Forge T.A., Kowalenko C.G. 2005. Responses of the bacterial and fungal biomass in a grassland soil to multiyear applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry 37 (4): 613-623.Google Scholar

  • Blagodatskaya E.V., Anderson T.H. 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry 30 (10-11): 1269-1274.Google Scholar

  • Bloem J., Vos A. 2004. Fluorescent staining of microbes for total direct counts. p. 861-874. In: “Molecular Microbial Ecology Manual” (G. Kowalchuk, F. de Bruijn, I.M. Head, A.J. van der Zijpp, J.D. van Elsas, eds.). Kluwer Academic Publishers, Dordrecht, Netherlands, 853-1044 pp.Google Scholar

  • Bruggen A.H.C. van 1995. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Disease 79 (10): 976-984.CrossrefGoogle Scholar

  • Bruggen A.H.C., Termorshuizen A.J. 2003. Integrated approaches to root disease management in organic farming systems. Australasian Plant Pathology 32 (2): 141-156.CrossrefGoogle Scholar

  • Bruinsma M., Kowalczuk G.A., Veen J.A. van. 2003. Effects of genetically modified plants on microbial communities and processes in soil. Biology and Fertility of Soils 37: 329-337.Google Scholar

  • Collins H.P., Alva A., Boydston R.A., Cochran R.L., Hamm P.B., McGuire A., Riga E. 2006. Soil microbial, fungal, and nematode responses to soil fumigation and cover crops under potato production. Biology and Fertility of Soils 42 (3): 247-257.Google Scholar

  • Curl E.A., Truelove B. 1986. The Rhizosphere. Springer-Verlag, New York, USA, 288 pp.Google Scholar

  • Davide R.G., Zorilla R.A. 1983. Biological and chemical control studies of the potato cyst nematodes found in Madaymen, Buguias, Benguet. Philippine Phytopathology 19: 28-35.Google Scholar

  • Davide R.G., Zorilla R.A. 1985. Evaluation of a fungus Paecilomyces lilacinus for the biological control of root-knot nematode Meloidogyne incognita on okra as compared with the nematicide Isazofos. Philippine Agriculturist 68: 493-500.Google Scholar

  • Domsch K.H., Gams W., Anderson T. 1980. Compendium of Soil Fungi. Academic Press, London-New York-Toronto-Sydney- San Francisco, 892 pp.Google Scholar

  • Fatima F., Pathak N., Verma S.R. 2014. An improved method for soil DNA extraction to study the microbial assortment within rhizospheric region. Molecular Biology International. 6 pp. Available on: http://dx.doi.org/10.1155/2014/518960 [Accessed: May 20, 2015]Google Scholar

  • Fiers M., Edel-Hermann V., Chatot C., Le Hingrat Y., Alabouvette C., Steinberg C. 2012. Potato soil-borne diseases. A review. Agronomy for Sustainable Development 32 (1): 93-132.Google Scholar

  • Fraser D.G., Doran J.W., Sahs W.W., Lesoing G.W. 1988. Soil microbial populations and activities under conventional and organic management. Journal of Environmental Quality 17 (4): 585-590.CrossrefGoogle Scholar

  • Fraser P.M., Haynes R.J., Williams P.H. 1994. Effects of pasture improvement and intensive cultivation on microbial biomass, enzyme activities and composition and size of earthworm population. Biology and Fertility of Soils 17 (3): 185-190.Google Scholar

  • Gachango E., Hanson L.E., Rojas A., Hao J.J., Kirk W.W. 2012. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Disease 96 (12): 1767-1774.CrossrefGoogle Scholar

  • Gardiner J.B., Morra M.J., Eberlein C.V., Brown P.D., Borek V. 1999. Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. Journal of Agriculture and Food Chemistry 47 (9): 3837-3842.CrossrefGoogle Scholar

  • Gudmestad N.C., Taylor R.J., Pasche J.S. 2007. Management of soilborne diseases of potato. Australasian Plant Pathology 36 (2): 109-115.CrossrefGoogle Scholar

  • Gunapala N., Scow K.M. 1998. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biology and Biochemistry 30 (6): 805-816.Google Scholar

  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. 2004. Trichoderma species - opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2 (1): 43-56.CrossrefGoogle Scholar

  • Henriksen T.M., Breland T.A. 1999. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biology and Biochemistry 31 (8): 1121-1134.Google Scholar

  • Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease 87 (1): 4-10.CrossrefGoogle Scholar

  • İnceoğlu Ö., Al-Soud W.A., Salles J.F., Semenov A.V., Elsas J.D. van. 2011. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE 6 (8): e23321.CrossrefGoogle Scholar

  • İnceoğlu Ö., Salles J.F., Overbeek L.S. van, Elsas J.D. van. 2010. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Applied and Environmental Microbiology 76 (11): 3675-3684.CrossrefGoogle Scholar

  • İnceoğlu Ö., Overbeek L.S. van, Falcão Salles J., Elsas J.D. van 2013. Normal operating range of bacterial communities in soil used for potato cropping. Applied and Environmental Microbiology 79 (4): 1160-1170. DOI: 10.1128/AEM.02811-12CrossrefGoogle Scholar

  • Jacobs H., Gray S.N., Crump D.H. 2003. Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycological Research 107 (1): 47-56.CrossrefGoogle Scholar

  • Jones E.B.G., Jennings D.H. 1965. The effect of cations on the growth of fungi. New Phytologist 64 (1): 86-100.CrossrefGoogle Scholar

  • Kennedy A.C., Smith K.L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil 170 (1): 75-86.CrossrefGoogle Scholar

  • Khan S.A., Hamayun M., Kim H.-Y., Lee I.-J., Kim J.-G. 2009. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World Journal of Microbiology and Biotechnology 25: 829-833.CrossrefGoogle Scholar

  • Krechel A., Faupel A., Hallmann J., Ulrich A., Berg G. 2002. Potato- associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology 48 (9): 772- 786.CrossrefGoogle Scholar

  • Kubicek C.P., Mach R.L., Peterbauer C.K., Lorito M. 2001. Trichoderma: from genes to biocontrol. Journal of Plant Pathology 83 (Special Issue): 11-24.Google Scholar

  • Kurzawińska H., Gajda I. 2002. Grzyby zasiedlające sucho gnijące bulwy ziemniaka. [Fungi settling dry rotting potato tubers]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 223/224: 315-319.Google Scholar

  • Kurzawińska H., Klima E. 1999. Dry rot fungi occurring in potato tubers. Horticulture and Vegetable Growing 18 (3): 216-222.Google Scholar

  • Kwaśna H., Chełkowski J., Zajkowski P. 1991. Grzyby (Mycota). [Fungi (Mycota)]. Vol. XXII. Sierpik (Fusarium). Polska Akademia Nauk, Flora Polska, Warszawa, Poland, 152 pp.Google Scholar

  • Lazarovits G., Hill J., Patterson G., Conn K.L., Crump N.S. 2007. Edaphic soil levels of mineral nutrients, pH, organic matter, and cationic exchange capacity in the geocaulosphere associated with potato common scab. Phytopathology 97 (9): 1071-1082.CrossrefGoogle Scholar

  • Lenc L. 2006. Rhizoctonia solani and Streptomyces scabies on sprouts and tubers of potato grown in organic and integrated systems, and fungal communities in the soil habitat. Phytopathologia Polonica 42: 13-28.Google Scholar

  • Lenc L. 2009. Occurrence of Streptomyces scabies on tubers of eight potato cultivars grown in organic and integrated system. Environmental Protection and Natural Resources 40: 669-676.Google Scholar

  • Lenc L., Kwaśna H., Sadowski Cz. 2012. Microbial communities in potato roots and soil in organic and integrated production systems compared by the plate culturing method. Journal of Phytopathology 160 (7-8): 337-345.CrossrefGoogle Scholar

  • Lenc L., Kwaśna H., Sadowski Cz. 2011. Dynamics of the root/ soil pathogens and antagonists in organic and integrated production of potato. European Journal of Plant Pathology 131: 603-620.CrossrefGoogle Scholar

  • Mäder P., Pfiffner L., Fliessbach A., Niggli U. 1995. Biodiversity of soil biota in biodynamic, organic and conventional farming systems. p. 45-58. In: Proceedings of the 1st ENOF Workshop on Biodiversity and Land Use: The Role of Organic Farming (J. Isart, J.J. Llerena, eds.). Bonn, Germany, 8-9 December 1995. Multitext Barcelona, Spain, 155 pp.Google Scholar

  • Manici L.M., Caputo F. 2009. Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy. Annals of Applied Biology 155 (2): 245-258.CrossrefGoogle Scholar

  • Martinez-Beringola M.L., Salto T., Vázquez G., Larena I., Melgarejo P., De Cal A. 2013. Penicillium oxalicum reduces the number of cysts and juveniles of potato cyst nematodes. Journal of Applied Microbiology 115 (1): 199-206.CrossrefGoogle Scholar

  • Messiha N.A.S., Bruggen A.H.C. van, Diepeningen A.D. van, Vos O.J. de, Termorshuizen A.J., Tjou-Tam-Sin N.N.A., Janse J.D. 2007. Potato brown rot incidence and severity under different management and amendment regimes in different soil types. European Journal of Plant Pathology 119 (4): 367-381.CrossrefGoogle Scholar

  • O’Brien M.J., Rich A.E. 1979. Potato Disease. Agriculture Handbook No 474, United States Department of Agriculture, Agricultural Research Service, Washington DC, USA, 80 pp.Google Scholar

  • Overbeek L. van, Elsas J.D. van. 2008. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiological Ecology 64 (2): 283-296.Google Scholar

  • Penton C.R., Gupta V.V.S.R., Tiedje J.M., Neate S.M., Ophel- Keller K., Gillings M., Harvey P., Pham A., Roget D.K. 2014. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS ONE 9 (4): e93893.CrossrefGoogle Scholar

  • Pitt J.I. 1979. The genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London- New York-Toronto-Sydney-San Francisco, 634 pp.Google Scholar

  • Porter S. 1995. Increasing options for cover cropping in the Northeast. SARE Project Report FNE94-066. Northeast Region SARE.Google Scholar

  • Sadowski Cz., Lenc L., Korpal W., Kawalec A. 2003. Health status of tubers od potato cultivated under organic and integrated conditions. p. 682-686. In: „Obieg pierwiastków w przyrodzie” [“Circuit Elements in Nature“] (B. Gworek, J. Misiak, eds.). Instytut Ochrony Środowiska, Warszawa, 730 pp.Google Scholar

  • Sadowski Cz., Klepin J., Baturo A., Lenc L. 2002. Zdrowotność bulw i kiełków ziemniaka uprawianego w systemie ekologicznym i konwencjonalnym. [Healthiness of tubers and sprouts of potato grown in organic and conventional system]. Zeszyty Problemowe Postępów Nauk Rolniczych 489: 95-102.Google Scholar

  • Schirmbock M., Lorito M., Wang Y.L., Hayes C.K., Arisan-Atac I., Scala F., Harman G.E., Kubicek C.P. 1994. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology 60 (12): 4364-4370.Google Scholar

  • Seifert K., Morgan-Jones G., Gams W., Kendrick B. 2011. The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands, 997 pp.Google Scholar

  • Shannon D., Sen A.M., Johnson D.B. 2002. A comparative study of the microbiology of soils managed under organic and conventional regimes. Soil Use and Management 18 (Suppl. 1): 274-283.Google Scholar

  • Spohn M. 2015. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio. Biogeosciences 12: 817-823.CrossrefGoogle Scholar

  • Steinberg C., Edel-Hermann V., Alabouvette C., Lemanceau P. 2007. Soil suppressiveness to plant diseases. p. 455-478. In: “Modern Soil Microbiology” (J.D. van Elsas, J. Jansson, J.T. Trevors, eds.) 2nd ed. CRC Press, Inc, Boca Raton, FL, USA, 646 pp.Google Scholar

  • Tagawa M., Tamaki H., Manome A., Koyama O., Kamagata Y, 2010. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiological Letters 305 (2): 136-142.Google Scholar

  • Tischler W. 1949. Grundzüge der terrestrischen Tierökologie. Friedrich Vieweg und Sohn, Braunschweig, Germany, 220 pp. (in German)Google Scholar

  • Vinten A.J.A., Whitmore A.P., Bloem J., Howard R., Wright F. 2002. Factors affecting N immobilisation/mineralisation kinetics for cellulose-, glucose- and straw-amended sandy soils. Biology and Fertility of Soils 36 (3): 190-199.Google Scholar

  • Vries F.T. de, Hoffland E., Eekeren N.J.M. van, Brussaard L., Bloem J. 2006. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry 38 (8): 2092-2103.Google Scholar

  • Weinert N., Meincke R., Gottwald C., Heuer H., Gomes N.C., Schloter M., Berg G., Smalla K. 2009. Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Applied and Environmental Microbiology 75 (12): 3859-3865.CrossrefGoogle Scholar

  • Weller D.M., Raaijmakers J.M., Gardene, B.B.M., Thomashow L.S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 309-348.CrossrefGoogle Scholar

  • Wojciechowska-Kot H., Kiszczak E. 1981. Patogeniczne Fusaria w przechowalniach ziemniaka oraz ich rola w powstawaniu suchej zgnilizny. [Pathogenic Fusarium spp. in potato storehouses and their role in causing dry rot]. Biuletyn Instytutu Ziemniaka 26: 95-102.Google Scholar

  • Yamanaka T. 2003. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia 95 (4): 584-589.CrossrefGoogle Scholar

  • Yao H., He Z., Wilson M.J., Campbell C.D. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology 40 (3): 223-237.Google Scholar

  • Yeates G.W., Bardgett R.D., Cook R., Hobbs P.J., Bowling P.J., Potter J.F. 1997. Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology 34 (2): 453-470.CrossrefGoogle Scholar

About the article

Received: 2016-01-18

Accepted: 2016-06-03

Published Online: 2016-07-08

Published in Print: 2016-04-01

Citation Information: Journal of Plant Protection Research, Volume 56, Issue 2, Pages 167–177, ISSN (Online) 1899-007X, DOI: https://doi.org/10.1515/jppr-2016-0029.

Export Citation

© by Hanna Kwaśna. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in