Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Plant Protection Research

The Journal of Polish Society of Plant Protection, Committee of Plant Protection; Polish Academy of Sciences, Institute of Plant Protection – National Research Institute

4 Issues per year


CiteScore 2016: 0.84

SCImago Journal Rank (SJR) 2016: 0.332
Source Normalized Impact per Paper (SNIP) 2016: 0.829

Open Access
Online
ISSN
1899-007X
See all formats and pricing
More options …

Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.)

Arun Karnwal
  • Corresponding author
  • Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-22 | DOI: https://doi.org/10.1515/jppr-2017-0020

Abstract

The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fluorescens and Bacillus subtilis isolated from the maize (Zea mays L.) rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA), hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31), while two others were 98% identical to P. fluorescens strain ATCC 13525, P. fluorescens strain IAM 12022 (AK18 and AK45) and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38). Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.

Keywords: genotyping; IAA; phytohormone; rhizosphere; rice

References

  • Adediran G.A., Ngwenya B.T., Mosselmans J.F., Heal K.V., Harvie B.A. 2016. Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis. International Journal of Phytoremediation 18 (7): 720–729. DOI: 10.1080/15226514.2015.1131235.CrossrefGoogle Scholar

  • Adesemoye A.O., Ugoji E.O. 2009. Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria in West Africa. Archives of Phytopathology and Plant Protection 42 (2): 188–200. DOI: http://dx.doi.org/10.1080/03235400601014791Crossref

  • Adesemoye A.O., Torbert H.A., Kloepper J.W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58 (4): 921–929. DOI: 10.1007/s00248-009-9531-yCrossrefGoogle Scholar

  • Aldesuquy H.S., Mansour F.A., Abo-Hamed S.A. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiologica 43 (5): 465–470. DOI: 10.1007/BF02820792CrossrefGoogle Scholar

  • Altomare C., Norvell W.A., Bjorkman T., Harman G.E. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65 (7): 2926–2933.Google Scholar

  • Araujo F.F. 2008. Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciência e Agrotecnologia 32 (2): 456–462. DOI: http://dx.doi.org/10.1590/S1413-70542008000200017Crossref

  • Arzanlou M., Mousavi S., Bakhshi M., Khakvar R., Bandehagh A. 2016. Inhibitory effects of antagonistic bacteria inhabiting the rhizosphere of the sugarbeet plants, on Cercospora beticola Sacc., the causal agent of Cercospora leaf spot disease on sugarbeet. Journal of Plant Protection Research 56 (1): 6–14. DOI: https://doi.org/10.1515/jppr-2016-0002Crossref

  • Asari S., Tarkowska D., Rolcik J., Novak O., Palmero D.V., Bejai S., Meijer J. 2016. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245(1): 15–30. DOI: 10.1007/s00425-016-2580-9CrossrefGoogle Scholar

  • Ashrafuzzaman M., Hossen F.A., Ismail M.R., Hoque M.A., Islam M.Z., Shahidullah S.M., Meon S. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8 (7): 1247–1252.Google Scholar

  • Bakker A.W., Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biology and Biochemistry 19: 451–457. DOI: https://doi.org/10.1016/0038-0717(87)90037-XCrossref

  • Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84 (1): 11–18. DOI: 10.1007/s00253-009-2092-7CrossrefGoogle Scholar

  • Błaszczyk L., Siwulski M., Sobieralski K., Lisiecka J., Jędryczka M. 2014. Trichoderma spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research 54 (4): 309–317. DOI: https://doi.org/10.2478/jppr-2014-0047Crossref

  • Chung E.J., Hossain M.T., Khan A., Kim K.H., Jeon C.O., Chung Y.R. 2015. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. The Plant Pathology Journal 31 (2): 152–164. DOI: 10.5423/PPJ.OA.12.2014.0136CrossrefGoogle Scholar

  • Chung E.J., Hossain M.T., Khan A., Kim K.H., Jeon C.O., Chung Y.R. 2015. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. The Plant Pathology Journal 31 (2): 152–164. DOI: 10.5423/PPJ.OA.12.2014.0136CrossrefGoogle Scholar

  • Damam M., Kaloori K., Gaddam B., Kausar R. 2016. Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. International Journal of Pharmaceutical Sciences Review and Research 37 (1): 130–136.Google Scholar

  • Das K., Katiyar V., Goel R. 2003. ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiology Results 158 (4): 359–362. DOI: 10.1078/0944-5013-00217CrossrefGoogle Scholar

  • De La Torre-Ruiz N., Ruiz-Valdiviezo V.M., Rincon-Molina C.I., Rodriguez-Mendiola M., Arias-Castro C., Gutierrez-Miceli F.A., Palomeque-Dominguez H., Rincon-Rosales R. 2016. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Brazilian Journal of Microbiology 47 (3): 587–596. DOI: 10.1016/j.bjm.2016.04.010CrossrefGoogle Scholar

  • Elbeltagy A., Nishioka K., Suzuki H., Sato T., Sato Y.I., Morisaki H., Mitsui H., Minamisawa K. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Science and Plant Nutrition 46 (3): 617–629. DOI: http://dx.doi.org/10.1080/00380768.2000.10409127Crossref

  • Erturk Y., Ercisli S., Haznedar A., Cakmakci R. 2010. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research 43 (1): 91–98. DOI: http://dx.doi.org/10.4067/S0716-97602010000100011Crossref

  • FAO (Food and Agriculture Organization) 2008. The State of Food Insecurity in the World. High food prices and food security – threats and opportunities. United Nations, Rome, Italy, 56 pp.Google Scholar

  • Fatnassi I.C., Chiboub M., Saadani O., Jebara M., Jebara S.H. 2015. Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. Journal of Basic Microbiology 55 (3): 303–311. DOI: 10.1002/jobm.201300323CrossrefGoogle Scholar

  • Glick B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41 (2): 109–117. DOI: 10.1139/m95-015CrossrefGoogle Scholar

  • Gopalakrishnan S., Srinivas V., Sree Vidya M., Rathore A. 2013. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. SpringerPlus 2: 574. DOI: 10.1186/2193-1801-2-574CrossrefGoogle Scholar

  • Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T. 1994. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, USA.Google Scholar

  • Huang J., Liu Z., Li S., Xu B., Gong Y., Yang Y., Sun H. 2016. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. The Journal of General and Applied Microbiology 62 (5): 258–265. DOI: 10.2323/jgam.2016.04.007CrossrefGoogle Scholar

  • IRRI (International Research Rice Institute) 1989. IRRI Toward 2000 and Beyond. Manila, Philippines, 66 pp.Google Scholar

  • Islam F., Yasmeen T., Ali Q., Ali S., Arif M.S., Hussain S., Rizvi H. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicology and Environmental Safety 104: 285–293. DOI: https://doi.org/10.1016/j.ecoenv.2014.03.008Crossref

  • Islam S., Akanda A.M., Prova A., Islam M.T., Hossain M.M. 2015. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiology 6: 1360. DOI: 10.3389/fmicb.2015.01360CrossrefGoogle Scholar

  • Ji S.H., Gururani M.A., Chun S.C. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research 169 (1): 83–98. DOI: https://doi.org/10.1016/j.micres.2013.06.003Crossref

  • Karnwal A. 2009. Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-tryptophan and rice root exudates. Journal of Plant Pathology 19 (1): 61–63.Google Scholar

  • Karnwal A. 2012. Screening of plant growth promoting rhizobacteria from maize (Zea mays) and wheat (Triticum aestivum). African Journal of Food, Agriculture, Nutrition and Development 12 (3): 6172–6186.Google Scholar

  • Karthik C., Sharma R., Barathi S., Sathya K., Govindharaju S., Arulselvi P. 2016. Screening of plant growth promoting traits in Cr(VI) reducing Rhizobium strains isolated from root nodules of Phaseolus vulgaris. International Journal of Chemical and Pharmaceutical Sciences 7 (1): 18–25.Google Scholar

  • Kejela T., Thakkar V.R., Thakor P. 2016. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology 16 (1): 277. DOI: 10.1186/s12866-016-0897-yCrossrefGoogle Scholar

  • Khamna S., Yokota A., Peberdy J.F. 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of Biosciences 4: 23–31. DOI: 10.5053/ejobios.2010.4.0.CrossrefGoogle Scholar

  • Kim S.-I., Kwak J.S., Song J.T., Seo H.S. 2016. Long-term effect of niclosamide on inhibition of bacterial leaf blight in rice. Journal of Plant Protection Research 56 (4): 323–327. DOI: https://doi.org/10.1515/jppr-2016-0051Crossref

  • Kloepper J.W., Lifshitz R., Zablotowicz R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7: 39–44.CrossrefGoogle Scholar

  • Kumar P., Dubey R.C., Maheshwari D.K. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research 167 (8): 493–499. DOI: 10.1016/j.micres.2012.05.002CrossrefGoogle Scholar

  • Kurepin L.V., Zaman M., Pharis R.P. 2014. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. Journal of the Science of Food and Agriculture 94 (9): 1715–1722. DOI: 10.1002/jsfa.6545CrossrefGoogle Scholar

  • Lifshtiz R., Kloepper J.W.E., Kozlowski M., Simonson C., Carlson J., Tipping E.M., Zaleska I. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Canadian Journal of Microbiology 33 (5): 309–395. DOI: 10.1139/m87-068CrossrefGoogle Scholar

  • Mäder P., Kaiser F., Adholeya A., Singh R., Uppal H.S., Sharma A.K., Srivastava R., Sahai V., Aragno M., Wiemken A., Johri B.N., Fried P.M. 2011. Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biology and Biochemistry 43 (3): 609–619. DOI: https://doi.org/10.1016/j.soilbio.2010.11.031Crossref

  • Mehta P., Walia A., Kulshrestha S., Chauhan A., Shirkot C.K. 2015. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology 55 (1): 33–44. DOI: 10.1002/jobm.201300562CrossrefGoogle Scholar

  • Patten C., Glick B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42 (3): 207–220. DOI: 10.1139/m96-032CrossrefGoogle Scholar

  • Persmark M., Frejd T., Mattiasson B. 1990. Purification, characterization, and structure of pseudobactin 589 A, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 29 (31): 7348–7356. DOI: 10.1021/bi00483a026CrossrefGoogle Scholar

  • Pham V.T., Rediers H., Ghequire M.G., Nguyen H.H., De Mot R., Vanderleyden J., Spaepen S. 2017. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology 199 (3): 513–517. DOI: 10.1007/s00203-016-1332-3CrossrefGoogle Scholar

  • Pikovskaya R. 1948. Mobilization of phosphorus and soil in connection with the vital activity of some microbial species. Mikrobiologiia 17: 362–370.Google Scholar

  • Puente M.E., Li C.Y., Bashan Y. 2004. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biology 6 (5): 643–650. DOI: 10.1055/s-2004-821101CrossrefGoogle Scholar

  • Rajendran L., Karthikeyan G., Raguchander T., Samiyappan R. 2007. In vitro evaluation of bacterial endophytes influence on Ganoderma lucidum (Leys) Karst. Mycelial growth. Journal of Plant Protection Research 47 (4): 425–436.Google Scholar

  • Sambrok J., Russell D.W. 2001Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2100 pp.Google Scholar

  • Scagliola M., Pii Y., Mimmo T., Cesco S., Ricciuti P., Crecchio C. 2016. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiology and Biochemistry 107: 187–196. DOI: 10.1016/j.plaphy.2016.06.002CrossrefGoogle Scholar

  • Schwyn B., Neilands J. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160 (1): 47–56.CrossrefGoogle Scholar

  • Singh R.P., Jha P.N. 2016. The Multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11 (6): e0155026. DOI: https://doi.org/10.1371/journal.pone.0155026Crossref

  • Souza R., Ambrosini A., Passaglia L.M. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38 (4): 401–419. DOI: 10.1590/S1415-475738420150053CrossrefGoogle Scholar

  • Stachecki S., Praczyk T., Adamczewski K. 2004. Adjuvant effects on plant growth regulators in winter wheat. Journal of Plant Protection Research 44 (4): 365–371.Google Scholar

  • Verma S.C., Ladha J.K., Tripathi A.K. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology 91 (2–3): 127–141. DOI: https://doi.org/10.1016/S0168-1656(01)00333-9Crossref

  • Zafar-ul-Hye M., Farooq H.M., Hussain M. 2015. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil. Brazilian Journal of Microbiology 46 (1): 97–102. DOI: 10.1590/S1517-838220131135CrossrefGoogle Scholar

  • Zhao L.F., Xu Y.J., Ma Z.Q., Deng Z.S., Shan C.J., Wei G.H. 2013. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Brazilian Journal of Microbiology 44 (2): 623–631. DOI: 10.1590/S1517-83822013000200043Google Scholar

About the article

Received: 2017-02-21

Revised: 2017-05-29

Published Online: 2017-07-22

Published in Print: 2017-06-01


Citation Information: Journal of Plant Protection Research, Volume 57, Issue 2, Pages 144–151, ISSN (Online) 1899-007X, DOI: https://doi.org/10.1515/jppr-2017-0020.

Export Citation

© 2017 Arun Karnwal, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in