Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Quantitative Analysis in Sports

An official journal of the American Statistical Association

Editor-in-Chief: Rigdon, Steve

Editorial Board Member: Glickman, PhD, Mark

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2015: 0.288
Source Normalized Impact per Paper (SNIP) 2015: 0.358

Online
ISSN
1559-0410
See all formats and pricing
More options …

Determining the Best Track Performances of All Time Using a Conceptual Population Model for Athletics Records

Alec G. Stephenson / Jonathan A. Tawn
Published Online: 2013-03-30 | DOI: https://doi.org/10.1515/jqas-2012-0047

Abstract

What is the best male and female athletics performance in history? We seek to answer this question for Olympic distance track events by simultaneously modelling race performances over all Olympic distances and all times. Our model uses techniques from a branch of statistics called extreme value theory, and incorporates information on improvements over time using an exponential trend in addition to a process which identifies the changing ability of the population of athletes across all distances. We conclude that the best male performance of all time is the 1968 world record of Lee Evans in the 400 m, and that the best female performance of all time is the current 1988 world record of Florence Griffith-Joyner in the 100 m. More generally, our approach provides a basis for deriving a ranking of track athletes over any distance and at any point over the last 100 years.

Keywords: athletics; Bayesian inference; extreme value distribution; extreme value theory

References

  • Achcar, A. J., H. Bolfarine, and L. R. Pericchi. 1987. “Transformation of Survival Data to an Extreme Value Distribution.” The Statistician 36:229–234.CrossrefGoogle Scholar

  • Ashour, S. K. and Y. M. El-Adl. 1980. “Bayesian Estimation of the Parameters of the Extreme Value Distribution.” The Egyptian Statistical Journal 24:140–152.Google Scholar

  • Brooks, S. P. and G. O. Roberts. 1998. “Convergence Assessment Techniques for Markov Chain Monte Carlo.” Statistics and Computing 8:319–335.CrossrefGoogle Scholar

  • Chatterjee, S. and S. Chatterjee. 1982. “New Lamps for Old: An Exploratory Analysis of Running Times in Olympic Games.” Applied Statistics 31:14–22.CrossrefGoogle Scholar

  • Coles, S. G. and E. A. Powell. 1996. “Bayesian Methods in Extreme Value Modelling: A Review and New Developments.” International Statistical Review 64:119–136.CrossrefGoogle Scholar

  • Coles, S. G. and J. A. Tawn. 1990. “Statistics of Coastal Flood Prevention.” Philosophical Transactions of the Royal Society of London: Series A 332:457–476.Google Scholar

  • Coles, S. G. and J. A. Tawn. 1991. “Modelling Extreme Multivariate Events.” Journal of Royal Statistical Society Series: B 53:377–392.Google Scholar

  • Coles, S. G. and J. A. Tawn. 1996. “A Bayesian Analysis of Extreme Rainfall Data.” Applied Statistics 45:463–478.CrossrefGoogle Scholar

  • Cooley, D., D. Nychka, and P. Naveau. 2007. “Bayesian Spatial Modeling of Extreme Precipitation Return Levels.” Journal of American Statistical Association 102:824–840.Web of ScienceGoogle Scholar

  • Cowles, M. K. and B. P. Carlin. 1996. “Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review.” Journal of American Statistical Association 91:883–904.Google Scholar

  • Davison, A. C., S. A. Padoan, and M. Ribatet. 2012. “Statistical Modelling of Spatial Extremes.” Statistical Science 27: 161–186.CrossrefWeb of ScienceGoogle Scholar

  • Engelund, S. and R. Rackwitz. 1992. “On Predictive Distribution Functions for the Three Asymptotic Extreme Value Distributions.” Structural Safety 11:255–258.CrossrefGoogle Scholar

  • Fisher, R. A. and L. H. C. Tippett. 1928. “Limiting Forms of Frequency Distributions of the Largest or Smallest Member of a Sample.” Proceedings of the Cambridge Philosophical Society 24: 180–190.CrossrefGoogle Scholar

  • Francis, A. W. 1943. “Running Records.” Science 98:315–316.PubMedCrossrefGoogle Scholar

  • Gaetan, C. and M. Grigoletto. 2007. “A Hierarchical Model for the Analysis of Spatial Rainfall Extremes.” Journal of Agricultural Biological, and Environmental Statistics 12:434–449.Web of ScienceCrossrefGoogle Scholar

  • Geman, S. and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–741.CrossrefGoogle Scholar

  • Gumbel, E. J. 1937a. La durée extrême de la vie humaine. Paris: Hermann et Cie.Google Scholar

  • Gumbel, E. J. 1937b. “Les intervalles extrêmes entre les émissions radioactives.” Journal de Physique et le Radium 8:446–452.CrossrefGoogle Scholar

  • Gumbel, E. J. 1941. “The Return Period of Flood Flows.” Annals of Mathematical Statistics 12:163–190.CrossrefGoogle Scholar

  • Hastings, W. K. 1970. “Monte Carlo Sampling Methods using Markov Chains and Their Applications.” Biometrika 57:97–109.CrossrefGoogle Scholar

  • Jenkinson, A. F. 1955. “The Frequency Distribution of the Annual Maximum (or minimum) /of Meteorological Elements.” Quarterly Journal of the Royal Meteorological Society 81: 158–171.CrossrefGoogle Scholar

  • Lingappaiah, G. S. 1984. “Bayesian Prediction Regions for the Extreme Order Statistics.” Biometrical Journal 26:49–56.CrossrefGoogle Scholar

  • Linthorne, N. P. 1994. “Was Flojo’s 100-m World Record Wind-Assisted?” Track Technique 127:4052–4057.Google Scholar

  • Mathis, F. 1989. “The Effect of Fatigue on Running Strategies.” SIAM Review 31:306–309.CrossrefGoogle Scholar

  • Morton, R. H. 1997. “Statistical Effects of Lane Allocation on Times in Running Races.” The Statistician 46:101–104.Google Scholar

  • Nordquist, J. M. 1945. “Theory of Largest Values, Applied to Earthquake Magnitudes.” Transactions – American Geophysical Union 26:29–31.CrossrefGoogle Scholar

  • Riegel, P. S. 1981. “Athletic Records and Human Endurance: A Time-vs.-Distance Equation Describing World-Record Performances may be Used to Compare the Relative Endurance Capabilities of Various Groups of People.” American Scientist 69:285–290.Google Scholar

  • Robinson, M. E. and J. A. Tawn. 1995. “Statistics for Exceptional Athletics Records.” Applied Statistics 44:499–511.CrossrefGoogle Scholar

  • Sang, H. and A. E. Gelfand. 2008. “Heirarchical Modeling for Extreme Values Observed Over Space and Time.” Environmental and Ecological Statistics 16:407–426.Web of ScienceGoogle Scholar

  • Schliep, E. M., D. Cooley, S. R. Sain, and J. A. Hoeting. 2010. “A Comparison Study of Extreme Precipitaion from Six Different Regional Climate Models Via Spatial Heirarchical Modeling.” Extremes 13:219–39.CrossrefWeb of ScienceGoogle Scholar

  • Schutz, R. W. and Y. Liu. 1998. “Statistical Modelling in Track and Field.” In: J. Bennett (ed.), Statistics in Sport. London: Arnold, pp. 173–196.Google Scholar

  • Smith, R. L. 1986. “Extreme Value Theory Based on their Largest Annual Events.” Journal of Hydrology 86:27–43.CrossrefGoogle Scholar

  • Smith, R. L. 1988. “Forecasting Records by Maximum Likelihood.” Journal of American Statistical Association 83:331–338.Google Scholar

  • Smith, R. L. and J. C. Naylor. 1987. “A Comparison of Maximum Likelihood and Bayesian Estimators for the Three Parameter Weilbull Distribution.” Applied Statistics 36:358–369.CrossrefGoogle Scholar

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. “Bayesian Measures of Model Complexity and Fit (with discussion).” Journal of Royal Statistical Society: Series B 64:583–639.Google Scholar

  • Strand, M. and D. Boes. 1998. “Modelling Road Racing Times of Competitive Recreational Runners Using Extreme Value Theory.” The American Statistician 52:205–210.Google Scholar

  • Walshaw, D. 2000. “Modelling Extreme Wind Speeds in Regions Prone to Hurricanes.” Applied Statistics 49:51–62.Google Scholar

  • Weibull, W. 1939. “The Phenomenon of Rupture in Solids.” Ingeniörs Vetenskaps Akademien Handlingar 153:2.Google Scholar

About the article

Corresponding author: Alec G. Stephenson, CSIRO Mathematics, Informatics and Statistics, Clayton South, Victoria, Australia


Published Online: 2013-03-30


Citation Information: Journal of Quantitative Analysis in Sports, ISSN (Online) 1559-0410, ISSN (Print) 2194-6388, DOI: https://doi.org/10.1515/jqas-2012-0047.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Isabel Fraga Alves, Cláudia Neves, and Pedro Rosário
Extremes, 2017, Volume 20, Number 1, Page 199

Comments (0)

Please log in or register to comment.
Log in