Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Journal of Quantitative Analysis in Sports

An official journal of the American Statistical Association

Editor-in-Chief: Glickman, PhD, Mark

4 Issues per year

CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2015: 0.288
Source Normalized Impact per Paper (SNIP) 2015: 0.358

See all formats and pricing
In This Section

Determining the Best Track Performances of All Time Using a Conceptual Population Model for Athletics Records

Alec G. Stephenson
  • Corresponding author
  • CSIRO Mathematics, Informatics and Statistics, Clayton South, Victoria, Australia
  • Email:
/ Jonathan A. Tawn
  • Department of Mathematics and Statistics, Lancaster University, UK
Published Online: 2013-03-30 | DOI: https://doi.org/10.1515/jqas-2012-0047


What is the best male and female athletics performance in history? We seek to answer this question for Olympic distance track events by simultaneously modelling race performances over all Olympic distances and all times. Our model uses techniques from a branch of statistics called extreme value theory, and incorporates information on improvements over time using an exponential trend in addition to a process which identifies the changing ability of the population of athletes across all distances. We conclude that the best male performance of all time is the 1968 world record of Lee Evans in the 400 m, and that the best female performance of all time is the current 1988 world record of Florence Griffith-Joyner in the 100 m. More generally, our approach provides a basis for deriving a ranking of track athletes over any distance and at any point over the last 100 years.

Keywords: athletics; Bayesian inference; extreme value distribution; extreme value theory


  • Achcar, A. J., H. Bolfarine, and L. R. Pericchi. 1987. “Transformation of Survival Data to an Extreme Value Distribution.” The Statistician 36:229–234. [Crossref]

  • Ashour, S. K. and Y. M. El-Adl. 1980. “Bayesian Estimation of the Parameters of the Extreme Value Distribution.” The Egyptian Statistical Journal 24:140–152.

  • Brooks, S. P. and G. O. Roberts. 1998. “Convergence Assessment Techniques for Markov Chain Monte Carlo.” Statistics and Computing 8:319–335. [Crossref]

  • Chatterjee, S. and S. Chatterjee. 1982. “New Lamps for Old: An Exploratory Analysis of Running Times in Olympic Games.” Applied Statistics 31:14–22. [Crossref]

  • Coles, S. G. and E. A. Powell. 1996. “Bayesian Methods in Extreme Value Modelling: A Review and New Developments.” International Statistical Review 64:119–136. [Crossref]

  • Coles, S. G. and J. A. Tawn. 1990. “Statistics of Coastal Flood Prevention.” Philosophical Transactions of the Royal Society of London: Series A 332:457–476.

  • Coles, S. G. and J. A. Tawn. 1991. “Modelling Extreme Multivariate Events.” Journal of Royal Statistical Society Series: B 53:377–392.

  • Coles, S. G. and J. A. Tawn. 1996. “A Bayesian Analysis of Extreme Rainfall Data.” Applied Statistics 45:463–478. [Crossref]

  • Cooley, D., D. Nychka, and P. Naveau. 2007. “Bayesian Spatial Modeling of Extreme Precipitation Return Levels.” Journal of American Statistical Association 102:824–840. [Web of Science]

  • Cowles, M. K. and B. P. Carlin. 1996. “Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review.” Journal of American Statistical Association 91:883–904.

  • Davison, A. C., S. A. Padoan, and M. Ribatet. 2012. “Statistical Modelling of Spatial Extremes.” Statistical Science 27: 161–186. [Crossref] [Web of Science]

  • Engelund, S. and R. Rackwitz. 1992. “On Predictive Distribution Functions for the Three Asymptotic Extreme Value Distributions.” Structural Safety 11:255–258. [Crossref]

  • Fisher, R. A. and L. H. C. Tippett. 1928. “Limiting Forms of Frequency Distributions of the Largest or Smallest Member of a Sample.” Proceedings of the Cambridge Philosophical Society 24: 180–190. [Crossref]

  • Francis, A. W. 1943. “Running Records.” Science 98:315–316. [PubMed] [Crossref]

  • Gaetan, C. and M. Grigoletto. 2007. “A Hierarchical Model for the Analysis of Spatial Rainfall Extremes.” Journal of Agricultural Biological, and Environmental Statistics 12:434–449. [Web of Science] [Crossref]

  • Geman, S. and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–741. [Crossref]

  • Gumbel, E. J. 1937a. La durée extrême de la vie humaine. Paris: Hermann et Cie.

  • Gumbel, E. J. 1937b. “Les intervalles extrêmes entre les émissions radioactives.” Journal de Physique et le Radium 8:446–452. [Crossref]

  • Gumbel, E. J. 1941. “The Return Period of Flood Flows.” Annals of Mathematical Statistics 12:163–190. [Crossref]

  • Hastings, W. K. 1970. “Monte Carlo Sampling Methods using Markov Chains and Their Applications.” Biometrika 57:97–109. [Crossref]

  • Jenkinson, A. F. 1955. “The Frequency Distribution of the Annual Maximum (or minimum) /of Meteorological Elements.” Quarterly Journal of the Royal Meteorological Society 81: 158–171. [Crossref]

  • Lingappaiah, G. S. 1984. “Bayesian Prediction Regions for the Extreme Order Statistics.” Biometrical Journal 26:49–56. [Crossref]

  • Linthorne, N. P. 1994. “Was Flojo’s 100-m World Record Wind-Assisted?” Track Technique 127:4052–4057.

  • Mathis, F. 1989. “The Effect of Fatigue on Running Strategies.” SIAM Review 31:306–309. [Crossref]

  • Morton, R. H. 1997. “Statistical Effects of Lane Allocation on Times in Running Races.” The Statistician 46:101–104.

  • Nordquist, J. M. 1945. “Theory of Largest Values, Applied to Earthquake Magnitudes.” Transactions – American Geophysical Union 26:29–31. [Crossref]

  • Riegel, P. S. 1981. “Athletic Records and Human Endurance: A Time-vs.-Distance Equation Describing World-Record Performances may be Used to Compare the Relative Endurance Capabilities of Various Groups of People.” American Scientist 69:285–290.

  • Robinson, M. E. and J. A. Tawn. 1995. “Statistics for Exceptional Athletics Records.” Applied Statistics 44:499–511. [Crossref]

  • Sang, H. and A. E. Gelfand. 2008. “Heirarchical Modeling for Extreme Values Observed Over Space and Time.” Environmental and Ecological Statistics 16:407–426. [Web of Science]

  • Schliep, E. M., D. Cooley, S. R. Sain, and J. A. Hoeting. 2010. “A Comparison Study of Extreme Precipitaion from Six Different Regional Climate Models Via Spatial Heirarchical Modeling.” Extremes 13:219–39. [Crossref] [Web of Science]

  • Schutz, R. W. and Y. Liu. 1998. “Statistical Modelling in Track and Field.” In: J. Bennett (ed.), Statistics in Sport. London: Arnold, pp. 173–196.

  • Smith, R. L. 1986. “Extreme Value Theory Based on their Largest Annual Events.” Journal of Hydrology 86:27–43. [Crossref]

  • Smith, R. L. 1988. “Forecasting Records by Maximum Likelihood.” Journal of American Statistical Association 83:331–338.

  • Smith, R. L. and J. C. Naylor. 1987. “A Comparison of Maximum Likelihood and Bayesian Estimators for the Three Parameter Weilbull Distribution.” Applied Statistics 36:358–369. [Crossref]

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. “Bayesian Measures of Model Complexity and Fit (with discussion).” Journal of Royal Statistical Society: Series B 64:583–639.

  • Strand, M. and D. Boes. 1998. “Modelling Road Racing Times of Competitive Recreational Runners Using Extreme Value Theory.” The American Statistician 52:205–210.

  • Walshaw, D. 2000. “Modelling Extreme Wind Speeds in Regions Prone to Hurricanes.” Applied Statistics 49:51–62.

  • Weibull, W. 1939. “The Phenomenon of Rupture in Solids.” Ingeniörs Vetenskaps Akademien Handlingar 153:2.

About the article

Corresponding author: Alec G. Stephenson, CSIRO Mathematics, Informatics and Statistics, Clayton South, Victoria, Australia

Published Online: 2013-03-30

Citation Information: Journal of Quantitative Analysis in Sports, ISSN (Online) 1559-0410, ISSN (Print) 2194-6388, DOI: https://doi.org/10.1515/jqas-2012-0047. Export Citation

Comments (0)

Please log in or register to comment.
Log in