Archetti, C. and M. G. Speranza. 2014. “A Survey on Matheuristics for Routing Problems.” EURO Journal on Computational Optimization 2:223–246.CrossrefGoogle Scholar
Della Croce, F., A. Grosso, and F. Salassa. 2011. A Matheuristic Approach for the Total Completion Time Two-Machines Permutation Flow Shop Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 38–47.Google Scholar
de Oliveira, L., C. C. de Souza, and T. Yunes. 2014. “Improved Bounds for the Traveling Umpire Problem: A Stronger Formulation and a Relax-and-Fix Heuristic.” European Journal of Operational Research 236:592–600.CrossrefWeb of ScienceGoogle Scholar
de Oliveira, L., C. C. de Souza, and T. Yunes. 2015. “On the Complexity of the Traveling Umpire Problem.” Theoretical Computer Science 562:101–111.Web of ScienceCrossrefGoogle Scholar
Doerner, K. F. and V. Schmid. 2010. “Hybrid Metaheuristics.” In: María J. Blesa, Christian Blum, Günther Raidl, Andrea Roli and Michael Sampels editors. Survey: Matheuristics for Rich Vehicle Routing Problems. Berlin Heidelberg: Springer, 206–221.Google Scholar
Hanafi, S., J. Lazić, N. Mladenović, C. Wilbaut, and I. Crévits. 2010. New Hybrid Matheuristics for Solving the Multidimensional Knapsack Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 118–132.Google Scholar
López-Ibáñez, M., J. Dubois-Lacoste, L. P. Cáceres, T. Stützle, and M. Birattari. 2016. “The Irace Package: Iterated Racing for Automatic Algorithm Configuration.” Operations Research Perspectives 3:43–58.CrossrefWeb of ScienceGoogle Scholar
Maniezzo, V., T. Stützle, and S. Voß. 2009. Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. 1st edn. Berlin, Heidelberg: Springer Publishing Company, Incorporated.Google Scholar
Puchinger, J. and G. R. Raidl. 2005. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 41–53.Google Scholar
Santos, H. G., T. A. M. Toffolo, R. A. M. Gomes, and S. Ribas. 2016. “Integer Programming Techniques for the Nurse Rostering Problem.” Annals of Operations Research 239:225–251.CrossrefWeb of ScienceGoogle Scholar
Smet, P., T. Wauters, M. Mihaylov, and G. V. Berghe. 2014. “The Shift Minimisation Personnel Task Scheduling Problem: A New Hybrid Approach and Computational Insights.” Omega 46:64–73.CrossrefWeb of ScienceGoogle Scholar
Toffolo, T. A. M. 2017. “Decomposition-Based Algorithms for Optimization Problems.” PhD thesis, KU Leuven, Belgium.Google Scholar
Toffolo, T. A. M., T. Wauters, S. Van Malderen, and G. Vanden Berghe. 2014. “Branch-and-Price and Improved Bounds to the Traveling Umpire Problem.” In Proceedings of the 10th International Conference on Practice and Theory of Automated Timetabling, PATAT, August 2014, York, UK, 420–432.Google Scholar
Toffolo, T., H. G. Santos, M. A. M. Carvalho, and J. A. Soares. 2016a. “An Integer Programming Approach to the Multimode Resource-Constrained Multiproject Scheduling Problem.” Journal of Scheduling 19:295–307.CrossrefWeb of ScienceGoogle Scholar
Toffolo, T. A. M., T. Wauters, S. Van Malderen, and G. Vanden Berghe. 2016b. “Branch-and-Bound with Decomposition-Based Lower Bounds for the Traveling Umpire Problem.” European Journal of Operational Research 250:737–744.CrossrefWeb of ScienceGoogle Scholar
Trick, M. A. and H. Yildiz. 2007. “Benders Cuts Guided Large Neighborhood Search for the Traveling Umpire Problem.” Pp. 332–345 in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, edited by P. V. Hentenryck and L. Wolsey. Lecture notes in computer science, Berlin Heidelberg: Springer, 4510.CrossrefGoogle Scholar
Trick, M. A. and H. Yildiz. 2012. “Locally Optimized Crossover for the Traveling Umpire Problem.” European Journal of Operational Research 216:286–292.Web of ScienceCrossrefGoogle Scholar
Trick, M. A., H. Yildiz, and T. Yunes. 2012. “Scheduling Major League Baseball Umpires and the Traveling Umpire Problem.” Interfaces 42:232–244.Web of ScienceCrossrefGoogle Scholar
Wauters, T., S. Van Malderen, and G. Vanden Berghe. 2014. “Decomposition and Local Search Based Methods for the Traveling Umpire Problem.” European Journal of Operational Research 238:886–898.CrossrefWeb of ScienceGoogle Scholar
Xue, L., Z. Luo, and A. Lim. 2015. “Two Exact Algorithms for the Traveling Umpire Problem.” European Journal of Operational Research 243:932–943.CrossrefWeb of ScienceGoogle Scholar
Yildiz, H. 2008. “Methodologies and Applications of Scheduling, Routing and Related Problems.” PhD thesis, Carnegie Mellon University.Google Scholar
Comments (0)