Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Quantitative Analysis in Sports

An official journal of the American Statistical Association

Editor-in-Chief: Steve Rigdon, PhD

4 Issues per year


CiteScore 2017: 0.67

SCImago Journal Rank (SJR) 2017: 0.290
Source Normalized Impact per Paper (SNIP) 2017: 0.853

Online
ISSN
1559-0410
See all formats and pricing
More options …
Ahead of print

Issues

Volume 1 (2005)

Analysis of a constructive matheuristic for the traveling umpire problem

Reshma Chirayil Chandrasekharan
  • Corresponding author
  • KU Leuven, Department of Computer Science, CODeS & imec – Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Túlio A.M. Toffolo
  • KU Leuven, Department of Computer Science, CODeS & imec – Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
  • Federal University of Ouro Preto, Department of Computing, Ouro Preto, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tony Wauters
Published Online: 2018-09-20 | DOI: https://doi.org/10.1515/jqas-2017-0118

Abstract

The Traveling Umpire Problem (TUP) is a combinatorial optimization problem concerning the assignment of umpires to the games of a fixed double round-robin tournament. The TUP draws inspiration from the real world multi-objective Major League Baseball (MLB) umpire scheduling problem, but is, however, restricted to the single objective of minimizing total travel distance of the umpires. Several hard constraints are employed to enforce fairness when assigning umpires, making it a challenging optimization problem. The present work concerns a constructive matheuristic approach which focuses primarily on large benchmark instances. A decomposition-based approach is employed which sequentially solves Integer Programming (IP) formulations of the subproblems to arrive at a feasible solution for the entire problem. This constructive matheuristic efficiently generates feasible solutions and improves the best known solutions of large benchmark instances of 26, 28, 30 and 32 teams well within the benchmark time limit. In addition, the algorithm is capable of producing feasible solutions for various small and medium benchmark instances competitive with those produced by other heuristic algorithms. The paper also details experiments conducted to evaluate various algorithmic design parameters such as subproblem size, overlap and objective functions.

Keywords: decomposition; integer programming; matheuristic; sports scheduling; TUP

References

  • Archetti, C. and M. G. Speranza. 2014. “A Survey on Matheuristics for Routing Problems.” EURO Journal on Computational Optimization 2:223–246.CrossrefGoogle Scholar

  • Della Croce, F., A. Grosso, and F. Salassa. 2011. A Matheuristic Approach for the Total Completion Time Two-Machines Permutation Flow Shop Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 38–47.Google Scholar

  • de Oliveira, L., C. C. de Souza, and T. Yunes. 2014. “Improved Bounds for the Traveling Umpire Problem: A Stronger Formulation and a Relax-and-Fix Heuristic.” European Journal of Operational Research 236:592–600.Web of ScienceCrossrefGoogle Scholar

  • de Oliveira, L., C. C. de Souza, and T. Yunes. 2015. “On the Complexity of the Traveling Umpire Problem.” Theoretical Computer Science 562:101–111.Web of ScienceCrossrefGoogle Scholar

  • Doerner, K. F. and V. Schmid. 2010. “Hybrid Metaheuristics.” In: María J. Blesa, Christian Blum, Günther Raidl, Andrea Roli and Michael Sampels editors. Survey: Matheuristics for Rich Vehicle Routing Problems. Berlin Heidelberg: Springer, 206–221.Google Scholar

  • Hanafi, S., J. Lazić, N. Mladenović, C. Wilbaut, and I. Crévits. 2010. New Hybrid Matheuristics for Solving the Multidimensional Knapsack Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 118–132.Google Scholar

  • López-Ibáñez, M., J. Dubois-Lacoste, L. P. Cáceres, T. Stützle, and M. Birattari. 2016. “The Irace Package: Iterated Racing for Automatic Algorithm Configuration.” Operations Research Perspectives 3:43–58.CrossrefGoogle Scholar

  • Maniezzo, V., T. Stützle, and S. Voß. 2009. Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. 1st edn. Berlin, Heidelberg: Springer Publishing Company, Incorporated.Google Scholar

  • Puchinger, J. and G. R. Raidl. 2005. Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 41–53.Google Scholar

  • Santos, H. G., T. A. M. Toffolo, R. A. M. Gomes, and S. Ribas. 2016. “Integer Programming Techniques for the Nurse Rostering Problem.” Annals of Operations Research 239:225–251.Web of ScienceCrossrefGoogle Scholar

  • Smet, P., T. Wauters, M. Mihaylov, and G. V. Berghe. 2014. “The Shift Minimisation Personnel Task Scheduling Problem: A New Hybrid Approach and Computational Insights.” Omega 46:64–73.CrossrefWeb of ScienceGoogle Scholar

  • Toffolo, T. A. M. 2017. “Decomposition-Based Algorithms for Optimization Problems.” PhD thesis, KU Leuven, Belgium.Google Scholar

  • Toffolo, T. A. M., T. Wauters, S. Van Malderen, and G. Vanden Berghe. 2014. “Branch-and-Price and Improved Bounds to the Traveling Umpire Problem.” In Proceedings of the 10th International Conference on Practice and Theory of Automated Timetabling, PATAT, August 2014, York, UK, 420–432.Google Scholar

  • Toffolo, T., H. G. Santos, M. A. M. Carvalho, and J. A. Soares. 2016a. “An Integer Programming Approach to the Multimode Resource-Constrained Multiproject Scheduling Problem.” Journal of Scheduling 19:295–307.Web of ScienceCrossrefGoogle Scholar

  • Toffolo, T. A. M., T. Wauters, S. Van Malderen, and G. Vanden Berghe. 2016b. “Branch-and-Bound with Decomposition-Based Lower Bounds for the Traveling Umpire Problem.” European Journal of Operational Research 250:737–744.Web of ScienceCrossrefGoogle Scholar

  • Trick, M. A. and H. Yildiz. 2007. “Benders Cuts Guided Large Neighborhood Search for the Traveling Umpire Problem.” Pp. 332–345 in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, edited by P. V. Hentenryck and L. Wolsey. Lecture notes in computer science, Berlin Heidelberg: Springer, 4510.CrossrefGoogle Scholar

  • Trick, M. A. and H. Yildiz. 2012. “Locally Optimized Crossover for the Traveling Umpire Problem.” European Journal of Operational Research 216:286–292.CrossrefWeb of ScienceGoogle Scholar

  • Trick, M. A., H. Yildiz, and T. Yunes. 2012. “Scheduling Major League Baseball Umpires and the Traveling Umpire Problem.” Interfaces 42:232–244.CrossrefWeb of ScienceGoogle Scholar

  • Wauters, T., S. Van Malderen, and G. Vanden Berghe. 2014. “Decomposition and Local Search Based Methods for the Traveling Umpire Problem.” European Journal of Operational Research 238:886–898.Web of ScienceCrossrefGoogle Scholar

  • Xue, L., Z. Luo, and A. Lim. 2015. “Two Exact Algorithms for the Traveling Umpire Problem.” European Journal of Operational Research 243:932–943.Web of ScienceCrossrefGoogle Scholar

  • Yildiz, H. 2008. “Methodologies and Applications of Scheduling, Routing and Related Problems.” PhD thesis, Carnegie Mellon University.Google Scholar

About the article

Published Online: 2018-09-20


Citation Information: Journal of Quantitative Analysis in Sports, 20170118, ISSN (Online) 1559-0410, ISSN (Print) 2194-6388, DOI: https://doi.org/10.1515/jqas-2017-0118.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in