Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Research in Physics

The Journal of University of Novi Sad

1 Issue per year

Open Access
Online
ISSN
2217-933X
See all formats and pricing
More options …

Thermomechanical study of non-crystalline chalcogenides in the As-S-Cd system

S. Lukić-Petrović
  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Vučkovac
  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Skuban
  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Dimitrievska
  • Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Videnović / V. Pinzenik
Published Online: 2012-05-22 | DOI: https://doi.org/10.2478/v10242-012-0006-y

Thermomechanical study of non-crystalline chalcogenides in the As-S-Cd system

The work analyzes the thermomechanical behavior of glasses of the pseudobinary system (As2S3)100-x(CdS)x, consisting of variable ratios of the classical amorphous semiconducting compound As2S3 and CdS molecule, which is used in manufacturing of photoresistors sensitive to visible and near infrared light. The study encompassed the determination of the thermal coefficients of linear expansion in solid and visco-plastic phases, softening temperature, and the temperature of the beginning of deformation. The results show that the values of these parameters increase with increase in the share of CdS in the initial matrix, as well as the reduction of instructural strength of the correlation matrix of glass. The analytical forms of dependence of significant physical values αg, Tg, Tw, as a function of CdS content in the structure of glasses were fitted to the measured data. Based on the obtained coefficients of linear expansion, the Poissons coefficient was also calculated.

Keywords: Chalcogenides; thermal coefficient of linear expansion; softening temperature

  • M. A. Popescu, Non-crystalline Chalcogenides, (National Institute of Materials Physics, Bucharest, 2002).Google Scholar

  • S. R. Lukić, D. M. Petrović, Complex amophous chalcogenides: Thermal stability and crystallization tendency, in "Physics applications of disordered materials" (edited by M. Popescu) 259-276, 2002.Google Scholar

  • Haitao Guo, Xiaolin Zheng, Xiujian Zhao, Guojun Gao, Yueqiu Gong, Shaoxuan Gu, J Mater Sci. 42, 6549, (2007).Google Scholar

  • Haitao Guo, Haizheng Tao, Yueqiu Gong, Xiujian Zhao, J. Non-Cryst. Solids 354, 1159, (2008).Google Scholar

  • C. Florea, J. S. Sanghera, I. D. Aggarwal, Opt Mater 30 (10), 1603, (2008).Google Scholar

  • Lu Min, Guo Hai-tao, Peng Bo, Hou Chao-qi, She Jiang-bo, Gao Fei, Acta Photonica Sinica 37 (1), 191 (2008).Google Scholar

  • S. R. Lukić, D. M. Petrović, F. Skuban, L Šidanin, I. O. Guth, Appl. Surf. Science 252 (22), 7917 (2006).Google Scholar

  • D. D. Štrbac, S. R. Lukić-Petrović, D. M. Petrović, M. Dramićanin, I. R. Videnović, Abstract Book, K-6, E-MRS 2011 Spring Meeting, May 9 13, Nice, France (2011).Google Scholar

  • G. Štrbac, S. Lukić-Petrović, I. Gut, D. Štrbac, S. N. Yannopoulos, J. Res. Phys. 34 (1), 39, (2010).Google Scholar

  • G. R. Chen, J. J. Cheng, Wei Chen, J Non-Cryst Solids 220 (2-3), 249, (1997).Google Scholar

  • S. K. Das, G. C. Morris, J. Appl. Phys 73 (2), 782, (1993).Google Scholar

  • G. C. Morris, R. Vanderveen, Solar Energy Mater. Solar Cells 26 (3), 217, (1992).Google Scholar

  • H. Zhao, A. Farah, D. Morel, C. S. Ferekides, Thin Solid Films, 517 (7), 2365, (2009).Google Scholar

  • G. Z. Vinogradova, Stekloobrazovanie i fazovye ravnovesiya v khalkogenidnykh sistemakh, (Nauka, Moskva, 1984).Google Scholar

  • S. R. Lukić, D. M. Petrović, D. D. Štrbac, V. B. Petrović, F. Skuban, J. Therm. Anal. Cal. 82, 41, (2005).Google Scholar

  • G. R. Štrbac, F. Skuban, S. R. Lukić, D. D. Štrbac, J. Optoel. Adv. Mat. 6, 1690, (2007).Google Scholar

  • V. B. Petrović, S. R. Lukić, M. V. Šiljegovic, F. Skuban, J. Optoel. Adv. Mat. 9 (4), 825 (2007).Google Scholar

  • P. Pustkova, J. Shanelova, P. Cicmanec, J. Malek, J. Therm. Anal. Cal. 72, 355. (2003).Google Scholar

  • M. Coenen, Glastechn. Ber. 50, 74. (1977).Google Scholar

  • D. S. Sanditov, V. V. Mandatov, Fiz. Khim. Stek. 10, 37, (1984).Google Scholar

  • D. S. Sanditov, G. M. Bartenev, Fizicheskie svoistva neuporyadochennykh struktur, (Nauka, Novosibirsk, 1982).Google Scholar

  • Z. U. Borisova, Glassy Semiconductors, (Plenum Press, New York, 1981).Google Scholar

  • G. Lucovsky, R. M. Martin, J. Non-Cryst. Solids 8, 185, (1972).CrossrefGoogle Scholar

About the article


Published Online: 2012-05-22

Published in Print: 2011-01-01


Citation Information: Journal of Research in Physics, ISSN (Print) 1450-7404, DOI: https://doi.org/10.2478/v10242-012-0006-y.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in