Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Research in Physics

The Journal of University of Novi Sad

1 Issue per year

Open Access
Online
ISSN
2217-933X
See all formats and pricing
More options …

Dependence of ionicity and mechanical properties on valence electron density in binary tetrahedral semiconductors

Amar Bahadur
  • Corresponding author
  • Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur- 228 118 (U.P.)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Madhukar Mishra
  • Department of Physics, Birla Institute of Technology and Science, Pilani - 333 031 (Rajasthan), India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-13 | DOI: https://doi.org/10.2478/v10242-012-0011-1

Abstract

Interesting relationships have been found between the electron density parameter, average bond length, homopolar energy gap, heteropolar energy gap, ionicity, bulk modulus and microhardness for binary tetrahedral semiconductors. The estimated values of these parameters are in good agreement with the available experimental values and theoretical findings. The electron density parameter data are the only input data to estimate all the above properties.

Keywords: Electron density parameter; bond ionicity; bulk modulus; microhardness; compound semiconductors

  • [1] P. H. O. Rappl and P. J. Mccann, IEEE Photonics Technology Lett. 15, 374 (2003).Google Scholar

  • [2] J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, (Pergamon Press, Oxford, 1975).Google Scholar

  • [3] S. Kasap and P. Capper, (Eds.) Handbook of Electronics and Photonic materials, XXXII (Springer, 2007).Google Scholar

  • [4] I. Vurgaftman, J. R. Meyer and L. R. Ram Mohan, Jour. Appl. Phys. 89, 5815 (2001).CrossrefGoogle Scholar

  • [5] S. M. Komirenka, K. W. Kim, V. A. Kochelap and J. M. Zavada, Appl. Phys. Lett. 81, 4616 (2002).Google Scholar

  • [6] X. Y. Wang, Z. M. Wang, V. R. Yazdanpanah, G. J. Salamo and M. Xiao, J. Appl. Phys. 95, 1609 (2004).Google Scholar

  • [7] S. B. Ma, X. D. Wang, F. H. Su, Z. L. Fang, K. Ding, Z. C. Niu and G. H Li, J. Appl. Phys. 95, 933 (2004).Google Scholar

  • [8] V. A. Azhazha, V. E. Kutnii, A. V. Rayka, I. N. Shlyakhov, D. V. Kutnii and A. A. Zakharchenka, At. Energy 92, 508 (2002).CrossrefGoogle Scholar

  • [9] J. C. Phillips, Phys. Rev. Lett. 20, 550 (1968).Google Scholar

  • [10] J. C. Phillips and J. A. Van Vechten., Phys. Rev. B 2, 2147 (1970); Phys. Rev. 183, 709 (1967).CrossrefGoogle Scholar

  • [11] J. A. Van Vechten, Phys. Rev. 182, 891 (1969); Phys. Rev. 187, 1007 (1969).Google Scholar

  • [12] B. F. Levine, Phys. Rev. B 7, 2591 (1973); Phys. Rev. B 7, 2600 (1973).Google Scholar

  • [13] D. R. Penn, Phys. Rev. 128, 2093 (1962).Google Scholar

  • [14] O. P. Singh and V. P. Gupta, Phys. Stat. Solidi (b) 137, 97 (1986).Google Scholar

  • [15] V. Kumar, G. M. Prasad, A. R. Chetal and Dinesh Chandra, Jour. Phys. Chem. Solids 57, 503 (1996).CrossrefGoogle Scholar

  • [16] L. Garbato and A. Rucci, Philos. Mag., 35, 1681 (1977); Philos. Mag. 35, 1685 (1977).CrossrefGoogle Scholar

  • [17] P. Dues and H. A. Schneider, Cryst. Res. Technol. 20, 867 (1985).Google Scholar

  • [18] R. I. Cottam and G. A. Saunders, Phys. Stat. Solidi (a) 33, 367 (1976).Google Scholar

  • [19] J. C. Phillips, Bonds and Bands in Semiconductors, (Academic Press, New York, 1973).Google Scholar

  • [20] M. L. Cohen, Phys. Rev. B 32, 7988 (1985).Google Scholar

  • [21] H. Neumann, Cryst. Res. Tech. 22, 271 (1987).Google Scholar

  • [22] H. Neumann, Cryst. Res. Tech. 22, 99 (1987).Google Scholar

  • [23] Y. Al- Douri, H. Abid and H. Aourag, Mater. Chem. Phys. 87, 14 (2004).Google Scholar

  • [24] R. R. Reddy, Y. Nazeer Ahmmed, K. Rama Gopal, P. Abdul Azeem, T. V. R. Rao and P. Mallikarjuna Reddy, Opt. Mater 14, 355 (2000).CrossrefGoogle Scholar

  • [25] R. R. Reddy, K. Rama Gopal, K. Narasimulu, L. Siva Sankara Reddy, K. Raghavendra Kumar, G. Balakrishnaiah and M. Ravi Kumar, J. Alloys Compunds 473, 28 (2009).Google Scholar

  • [26] D. S. Yadav and S. P. Singh, Phys. Scr. 82, 065705 (2010).CrossrefGoogle Scholar

  • [27] V. K. Srivastava, A. K. Srivastava and Vijeta Jha, Jour. Phys. Chem. Solids 71, 1513 (2010).Google Scholar

  • [28] A. S. Verma and S. R. Bhardwaj, Phys. Stat. Solidi (b) 243, 2858 (2006).Google Scholar

  • [29] S. K. Gorai and Parmanand Mahto, Indian Jour. Phys. 84, 587 (2010).Google Scholar

  • [30] V. Kumar, Jour. Phys. Chem. Solids 61, 91 (2000). Google Scholar

  • [31] R. K. Singh, A. S. Verma and S. K. Rathi, The Open Condensed Matter Physics Journal 2, 25 (2009).Google Scholar

  • [32] V. Kumar, G. M. Prasad and D. Chandra, Jour. Phys. Chem. Solids 58, 863 (1997).Google Scholar

  • [33] N. W. Ashcroft and N. D. Mermin, Solid State Phys, (New York, 1976).Google Scholar

  • [34] N. E. Christensen, S. Satpathy and Z. Pawlowska, Phys. Rev. B36, 1032 (1987).CrossrefGoogle Scholar

  • [35] J. N. Plendl, S. S. Mitra and P J Gielisse, Phys. Stat. Solidi (b) 12, 367 (1965).Google Scholar

  • [36] Y. Al- Douri, H Abid and H. Aourag, Physica B 322, 179 (2002).Google Scholar

  • [37] D. R. Lide (Ed.), Handbook of Chem. and Phys., (CRC Press, 1999). Google Scholar

About the article

Published Online: 2013-08-13

Published in Print: 2012-01-01


Citation Information: Journal of Research in Physics, ISSN (Online) 2217-933X, DOI: https://doi.org/10.2478/v10242-012-0011-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in