Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Research in Physics

The Journal of University of Novi Sad

1 Issue per year

Open Access
Online
ISSN
2217-933X
See all formats and pricing
More options …

Biophysical characterization of human breast tissues by photoluminescence excitation-emission spectroscopy

Tatjana Dramićanin
  • Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lea Lenhardt
  • Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivana Zeković
  • Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslav D. Dramićanin
  • Corresponding author
  • Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-08-13 | DOI: https://doi.org/10.2478/v10242-012-0013-z

Abstract

Fluorescence excitation-emission spectroscopy was used to investigate specimens of normal and malignant human breast tissues. Measurements were performed in two spectral regions: in the excitation range from 335nm to 400nm and emission range from 430nm to 625 nm, and in the excitation range from 400nm to 470nm and emission range from 500nm to 640 nm. It was found that fluorescence spectra are composed mainly of the emissions of extracellular proteins and that the differences in the intensity of their emissions reveal the changes in the tissue structure and morphology. These differences could be best observed in the emission spectra excited with 370 nm, 425nm and 455nm radiation. Statistical analysis revealed several spectral subregions that exhibited extremely significant statistical difference between normal and malignant breast tissues. The origin of these differences was elaborated, and prospects for optical diagnostics of breast cancer was discussed.

Keywords: Molecular spectroscopy; photoluminescence spectroscopy; cancer

  • [1] http://www.komen.org/bci (accessed 2013).Google Scholar

  • [2] J. R. Harris, M. E. Lippman, M. Morrow, C. K. Osborne, Diseases of the breast, (Lippicott Williams & Wilkins, 2ed. Philadelphia, 2000).Google Scholar

  • [3] N. Ramanujam, Fluorescence spectroscopy in vivo, p. 20, (John Willey & Sons: Ltd. Chichester, New York, 2000).Google Scholar

  • [4] S. K. Gayen, R.R. Alfano, Opt. Photon News 7, 17 (1996).Google Scholar

  • [5] L. Avramaov, E. Borisova, P.D. Townsend, L.A. Valberg, Mater. Sci. Forum 480, 411 (2005).Google Scholar

  • [6] R. Richards-Kortum, E. Sevick-Muraca, Annu. Rev. Phys. Chem. 47, 555 (1996).Google Scholar

  • [7] S. Brad, H. Stepp, T. Ochsenkuhu, R. Baumgartner, G. Baretton, J. Holl, Int. J. Colorect. Dis. 14, 63 (1999).Google Scholar

  • [8] B. Mayinger, M. Jordan, P. Horner, C. Gerlach, S. Muehldorfer, B. R. Bittorf, J. Photochem. Photobiol. B: Biology 70, 13 (2003).Google Scholar

  • [9] B. Palcic, S. Lam, J. Hung, Chest 99, 742 (1991).Google Scholar

  • [10] C. S. Betz, M. Mehlmann, K. Rick, H. Stepp, G. Grevers, R. Baumgartner, Lasers Surg. Med. 25, 323 (1999).PubMedGoogle Scholar

  • [11] S. K. Majumder, A. Uppal, P. K. Gupta, Lasers Life. Sci. 8, 211 (1999).Google Scholar

  • [12] H. J. C. M. Sterenborg, M. Motamedi, R. F. Wagner, S. Thomsen, S. L. Jacques, Lasers Med. Sci. 9, 191 (1994).Google Scholar

  • [13] R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. J. Choy, E. Orpher, IEEE J. Quantum Electron 23, 1806 (1987).Google Scholar

  • [14] R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, J. Opt. Soc. Amer. B (Opt. Phys.) 6, 1015 (1989).Google Scholar

  • [15] Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szezepaniak, R. R. Alfano, Lasers Life Sci. 7, 115 (1996).Google Scholar

  • [16] Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szezepaniak, R. R. Alfano, Photochem. Photobiol. 66, 518 (1997).PubMedGoogle Scholar

  • [17] Y. Yuanlong, E. J. Celmer, M. Zurawska-Szezepaniak, R. R. Alfano, Lasers Life Sci. 7, 249 (1997).Google Scholar

  • [18] P. K. Gupta, S. K. Majumder, A. Uppal, Lasers Surg. Med. 21(5), 417 (1997).PubMedGoogle Scholar

  • [19] G. M. Palmer and N. Ramanujam, Med. Laser Appl. 18, 233 (2003).Google Scholar

  • [20] R. Hage, P. R. Galhanone, R. A. Zˆangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, Lasers Med. Sci. 18, 171 (2003).PubMedGoogle Scholar

  • [21] T. Drami´canin, M.D. Drami´canin, V. Jokanovi´c, D. Nikoli´c-Vukosavljevi´c, B. Dimitrijevi ´c, Photochem. Photobiol. 81, 1554 (2005).Google Scholar

  • [22] T. Drami´canin, M.D. Drami´canin, B. Dimitrijevi´c, V. Jokanovi´c, S. Luki´c, Acta Chim. Slov. 53, 444 (2006).Google Scholar

  • [23] T. Drami´canin, M.D. Drami´canin, B. Dimitrijevi´c, Zbornik radova (44. Savetovanje srpskog hemijskog drutva) 70 3 (2006).Google Scholar

  • [24] I. Georgakoudi, B.C. Jacobson, M.G. Muller, E.E. Sheets, K. Badizadegan, D.L. Carr-Locke, Cancer Res. 62, 682 (2002).PubMedGoogle Scholar

  • [25] G. Fenhalls, D.M. Dent, M.I. Parker, Br. J. Cancer 81, 142 (1999).Google Scholar

  • [26] A. Uppal and P. K. Gupta, Biotechnol. Appl. Biochem. 37, 45 (2003).PubMedGoogle Scholar

  • [27] T. Drami´canin, I. Zekovi´c, B. Dimitrijevi´c, S. Ribar, M. D. Drami´canin, Acta Phys. Pol. A 116(4), 690 (2009). Google Scholar

About the article

Published Online: 2013-08-13

Published in Print: 2012-01-01


Citation Information: Journal of Research in Physics, ISSN (Online) 2217-933X, DOI: https://doi.org/10.2478/v10242-012-0013-z.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in