Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Research in Physics

The Journal of University of Novi Sad

1 Issue per year

Open Access
See all formats and pricing
More options …

Analysis of luminescence of Eu3+ doped Lu2Ti2O7 powders with Judd-Ofelt theory

Katarina Vuković / Sanja Ćulubrk / Milica Sekulić / Miroslav D. Dramićanin
Published Online: 2016-06-16 | DOI: https://doi.org/10.1515/jrp-2015-0003


Eu3+ doped Lu2Ti2O7 particles of 6 to 10 nm in diameter are prepared by Pechini-type polymerized complex route based on polyesterification between citric acid (CA) and ethylene glycol. X-ray diffraction measurements confirmed that Eu3+ doped Lu2Ti2O7 powders crystallized in the face-centered cubic lattice (Fd3m). Emission spectra displayed characteristic 5D07 FJ (J = 0, 1, 2, 3 and 4) spin forbidden f-f electronic transitions of the Eu3+ ions with the most pronounced emission coming from 5D07 F2 and with the emission decays varying between 0.75 and 0.60 ms for samples doped with different concentration of Eu3+. The Judd-Ofelt theory was applied to the experimental data for the quantitative determination of optical parameters such as Ω2, Ω4 Judd-Ofelt parameters, radiative and nonradiative transition rates and emission quantum efficiency. It was observed that, for all the samples, Ω2 >> Ω4. The luminescence quantum yields were calculated by means of the Judd-Ofelt theory and the highest value 60.83 % is obtained for particles doped with concentration of 3 % Eu3+.

Keywords: Judd-Ofelt analyses; Eu3+; luminescence; lanthanides


  • [1] T. Justel, H. Nikol and C. Ronda, Angew. Chem. Int. Ed. 37, 3084 (1998).Google Scholar

  • [2] A. J. Kenyonn, C. E. Chryssou and C. W. Pitt, J. Appl. Phys. 91, 367 (2002).Google Scholar

  • [3] S. A. Kramer, H. L. Tuller, Solid State Ion. 82, 15 (1995).Google Scholar

  • [4] E. Aleshin and R. Roy, J. Am. Ceram. Sot. 45, 18 (1962).Google Scholar

  • [5] D. D. Hogarth, Am. Mineral. 62, 403 (1977).Google Scholar

  • [6] M. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).Google Scholar

  • [7] A. V. Shlyakhtina, A. V. Knotko, M. V. Boguslavskii, S. Yu. Stefanovich, D. V. Peryshkov, I. V. Kolbanev, L. G. Shcherbakova, Solid State Ion. 176, 2297 (2005).Google Scholar

  • [8] K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).Google Scholar

  • [9] P. A. Tanner, Y. Y. Yeung, and L. Ning, J. Phys. Chem. A 117, 2771 (2013).Google Scholar

  • [10] B. R. Judd, Phys. Rev. 127, 750 (1962).Google Scholar

  • [11] G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).Google Scholar

  • [12] M. J. Weber, T. E. Varitimos, and B. H. Matsinger, Phys. Rev. B 8, 47 (1973).Google Scholar

  • [13] J. E. Lowther, J. Phys. C 7, 4393 (1974).Google Scholar

  • [14] C. Görller-Walrand, L. Fluyt, A. Ceulemans, and W.T. Carnall, J. Chem. Phys. 95 (1991).Google Scholar

  • [15] M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542 (2002).Google Scholar

  • [16] W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).Google Scholar

  • [17] L. Đacanin, S. R. Lukić, D. M. Petrović, M. Nikolić, and M. D. Dramićanin, Physica B 406, 2319 (2011).Google Scholar

  • [18] D. D. Gulamova, Geliotekhnika 2009(1), P55-66 CAPLUS.Google Scholar

  • [19] D. Uma Maheswari, J. Suresh Kumar, L. R. Moorthy, K. Jang, and M. Jayasimhadri, Physica B 403, 1690 (2008).Google Scholar

  • [20] C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, and L. R. Dalton, J. Opt. Soc. Am. B: Opt. Phys. 14, 155 (1997).Google Scholar

  • [21] S. S. Braga, R. A. Sá Ferreira, I. S. Gonçalves, M. Pillinger, J. Rocha, J. J. C. Teixeira-Dias, and L. D. Carlos, J. Phys. Chem. B 106, 11430 (2002).Google Scholar

  • [22] A. Patra, E. Sominska, S. Ramesh, Y. Koltypin, Z. Zhong, H. Minti, R. Reisfeld, and A. Gedanken, J. Phys. Chem. B 103, 3361 (1999).Google Scholar

  • [23] G. Ehrhart, M. Bouazaoui, B. Capoen, V. Ferreiro, R. Mahiou, O. Robbe, and S. Turrell, Opt. Mater. 29, 1723 (2007).Google Scholar

  • [24] K. Binnemans, K. Van Herck, and C. Görller-Walrand, Chem. Phys. Lett. 266, 297 (1997).Google Scholar

  • [25] P. Babu, and C. K. Jayasankar, Physica B 279, 262 (2000).Google Scholar

  • [26] M. Kumar, T. K. Seshagiri, and S. V. Godbole, Physica B 410, 141 (2013).Google Scholar

  • [27] G. Zhou, Z. Wang, B. Zhou, Y. Zhao, G. Zhang, S. Wang, Opt. Mater. 35, 774 (2013).CrossrefGoogle Scholar

  • [28] R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, D. Ajó, Spectrochim. Acta Mol. Biomol. Spectrosc. 57, 2009 (2001).Google Scholar

About the article

Received: 2015-10-26

Published Online: 2016-06-16

Published in Print: 2015-12-01

Citation Information: Journal of Research in Physics, Volume 38-39, Issue 1, Pages 23–32, ISSN (Online) 2217-933X, DOI: https://doi.org/10.1515/jrp-2015-0003.

Export Citation

© 2014 Katarina Vuković et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in