Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Translational Internal Medicine

4 Issues per year

Open Access
Online
ISSN
2224-4018
See all formats and pricing
More options …

Role of genetic factors in the development of acute respiratory distress syndrome

Chang Liu
  • Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian-guo Li
  • Corresponding author
  • Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-24 | DOI: https://doi.org/10.4103/2224-4018.141831

Abstract

Acute respiratory distress syndrome (ARDS) is not a genetic disease, but gene polymorphism influences the susceptibility, severity and prognosis of ARDS. It has been reported that the polymorphism of genes, such as angiotensin-converting enzyme and extracellular superoxide dismutase 3 genes, is related to ARDS. Research on the gene polymorphism of ARDS is currently in the preclinical stage, but it develops fast, In the future, ARDS-related gene polymorphism may play an important role in identifying susceptibility risk, assessing prognosis revealing new etiology and pathophysiological mechanisms, and optimizing diagnosis and treatment.

Keywords: Acute respiratory distress syndrome; genetics; gene polymorphism

References

  • 1. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342:1334-49.Web of ScienceGoogle Scholar

  • 2. Cardinal-Fernandez P, Nin N, Lorente JA. Acute lung injury and acute respiratorydistress syndrome: A genomic perspective. Med Intensiva 2011;35:361-72.Google Scholar

  • 3. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensinconverting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112-6.Google Scholar

  • 4. Arndt PG, Young SK, Poch KR, Nick JA, Falk S, Schrier RW, et al. Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lungneutrophils recruitment through both bradykinin and angiotensin II-regulated pathways. J Immunol 2006;177:7233-41.Google Scholar

  • 5. Adamzik M, Frey U, Sixt S, Knemeyer L, Beiderlinden M, Peters J, et al. ACE I /D but not AGT (-6) A/G polymorphism is a risk factor for mortality in ARDS. Eur Respir J 2007;29:482-8.CrossrefWeb of ScienceGoogle Scholar

  • 6. Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002;166:646-50.Web of ScienceCrossrefGoogle Scholar

  • 7. Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC. Polymorphism of the angiotensin converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med 2006;34:1001-6.CrossrefGoogle Scholar

  • 8. Lu XM, Chen GJ, Yang Y, Qui HB. Angiotensin-converting enzyme polymorphism affects outcome of local Chinese with acute lung injury. Respir Med 2011;105:1485-90.CrossrefWeb of ScienceGoogle Scholar

  • 9. Matsuda A, Kishi T, Jacob A, Aziz M, Wang P. Association between insertion /deletion polymorphism in Angiotensin-converting enzyme gene and acute lung injury /acute respiratory distress syndrome: A meta-analysis. BMC Med Genet 2012;13:76.CrossrefWeb of ScienceGoogle Scholar

  • 10. Bowler RP, Nicks M, Tran K, Tanner G, Chang LY, Young SK, et al. Extracellular superoxide dismutase attenuates lipopolysaccharide induced neutrophilic inflammation. Am J Respir Cell Mol Biol 2004;31:432-9.CrossrefGoogle Scholar

  • 11. Arcaroli JJ, Hokanson JE, Abraham E, Geraci M, Murphy JR, Bowler RP, et al. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med 2009;179:105-12.Web of ScienceGoogle Scholar

  • 12. Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P. Polymorphic haplotypes of the interleukin-10 5’flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile arthritis. Arthritis Rheum 1999;42:1101-8.CrossrefGoogle Scholar

  • 13. Gong MN, Thompson BT, Williams PL, Zhou W, Wang MZ, Pothier L, et al. Interleukin-10 polymorphism in position - 1082 and acute respiratory distress syndrome. Eur Respir J 2006;27:674-81.CrossrefGoogle Scholar

  • 14. Wainwright MS, Rossi J, Schavocky J, Crawford S, Steinhorn D, Velentza AV, et al. Protein kinase involved in lung injury susceptibility: Evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci USA 2003;100:6233-8.CrossrefGoogle Scholar

  • 15. Eutamene H, Theodorou V, Schmidlin F, Tondereau V, Garcia-Villar R, Salvador-Cartier C, et al. LPS-induced lung inflammation is linked to increased epithelial permeability: Role of MLCK. Eur Resp J 2005;25:789-96.CrossrefGoogle Scholar

  • 16. Gao L, Grant A, Halder I, Brower R, Sevransky J, Maloney JP, et al. Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am J Respir Cell Mol Biol 2006;34:487-95.CrossrefGoogle Scholar

  • 17. Christie JD, Ma SF, Aplenc R, Li M, Lanken PN, Shah CV, et al. Variation in the myosin light chain kinase gene is associated with development of acute lung injury after major trauma. Crit Care Med 2008;36:2794-800.Web of ScienceCrossrefGoogle Scholar

  • 18. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 2007;21:2237-46.Google Scholar

  • 19. Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 2005;171:361-70.Google Scholar

  • 20. Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC. Pre-Bcell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med 2007;35:1290-95.CrossrefGoogle Scholar

  • 21. Eisner MD, Parsons PE, Matthay MA, Ware L, Greene K; Acute Respiratory Distress Syndrome Network. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003;58:983-8.CrossrefGoogle Scholar

  • 22. Floros J, Veletza SV, Kotikalapudi P, Krizkova L, Karinch AM, Friedman C, et al. Dinucleotide repeats in the human surfactant protein-B gene and respiratory distress syndrome. Biochem J 1995;305:583-90.Google Scholar

  • 23. Gong MN, Wei Z, Xu LL, Miller DP, Thompson BT, Christiani DC. Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest 2004;125:203-11.CrossrefGoogle Scholar

  • 24. Currier PF, Gong MN, Zhai R, Pothier LJ, Boyce PD, Xu L, et al. Surfactant protein-B polymorphisms and mortality in the acute respiratory distress syndrome. Crit Care Med 2008;36:2511-6.CrossrefWeb of ScienceGoogle Scholar

  • 25. Quasney MW, Waterer GW, Dahmer MK, Kron GK, Zhang Q, Kessler LA, et al. Association between surfactant protein-B + 1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Crit Care Med 2004;32:1115-9.CrossrefGoogle Scholar

  • 26. Gong MN, Zhou W, Williams PL, Thompson BT, Pothier L, Boyce P, et al. 308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J 2005;26:382-9.CrossrefGoogle Scholar

  • 27. Corne J, Chupp G, Lee CG, Homer RJ, Zhu Z, Chen Q, et al. IL-13 stimulates vascular endothelial growth factor and protects against hyperoxic lung injury. J Clin Invest 2000;106:783-91.CrossrefGoogle Scholar

  • 28. Medford AR, Keen LJ, Bidwell JL, Millar AB. Vascular endothelial growth factor gene polymorphism and acute respiratory distress syndrome. Thorax 2005;60:244-8.CrossrefGoogle Scholar

  • 29. Zhai R, Gong MN, Zhou W, Thompson TB, Kraft P, Su L, et al. Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS. Thorax 2007;62:718-22.Web of ScienceCrossrefGoogle Scholar

  • 30. Gong MN. Genetic epidemiology of acute respiratory distress syndrome: Implication for future prevention and treatment. Clin Chest Med 2006;27:705-24.CrossrefGoogle Scholar

  • 31. Dong HJ, Luo YC, Gao FH. Clinical study on the strategy of fluid management for ARDS patients. Acta Acad Med CPAPF 2011;20:535-7.Google Scholar

  • 32. Wang CM, Zhang PR, Zhang Y. Research on correlation between complicated acute lung injury/acute respiratory distress syndrome and plasminogen activator inhibitor-1 in patients with acute cerebral infarction. J Clin Med Prac 2012;16:23-5. Google Scholar

About the article

Published Online: 2015-04-24

Published in Print: 2014-09-01


Citation Information: Journal of Translational Internal Medicine, Volume 2, Issue 3, Pages 107–110, ISSN (Online) 2224-4018, DOI: https://doi.org/10.4103/2224-4018.141831.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rob Mac Sweeney and Daniel F McAuley
The Lancet, 2016, Volume 388, Number 10058, Page 2416

Comments (0)

Please log in or register to comment.
Log in