Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Translational Internal Medicine

4 Issues per year

Open Access
Online
ISSN
2224-4018
See all formats and pricing
More options …

Biomarkers in the diagnosis and prognostic assessment of acute respiratory distress syndrome

Jing Yan / Qun Rao
Published Online: 2015-04-24 | DOI: https://doi.org/10.4103/2224-4018.147740

Abstract

Acute respiratory distress syndrome is a common syndrome in clinical practice, particularly in the Intensive Care Unit (ICU), with a high morbidity and mortality rate. The prerequisite of its early treatment is early diagnosis. The early biomarkers hence have been gradually favored. While some new and original biomarkers continue to be the focus of research, some biomarkers such as C-reactive protein and procalcitonin have been widely used in clinical practice.

Keywords: Acute respiratory distress syndrome; biomarkers; diagnosis; prognosis

References

  • 1. Lesur O, Langevin S, Berthiaume Y, Légaré M, Skrobik Y, Bellemare JF, et al. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensive Care Med 2006;32:1167-74.Google Scholar

  • 2. Determann RM, Millo JL, Waddy S, Lutter R, Garrard CS, Schultz MJ. Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: A retrospective observational study. BMC Pulmon Med 2009;9:49-58.CrossrefGoogle Scholar

  • 3. Determann RM, Royakkers AANM, Lutter R, Korevaar JC, Schultz MJ. Clara Cell Protein and Surfactant Protein D Plasma Levels are Associated with Clinical Outcomes of Mechanically Ventilated Patients. J Pulmon Resp Med 2013;3:138.Google Scholar

  • 4. Determann RM, Royakkers AA, Haitsma JJ, Zhang H, Slutsky AS, Ranieri VM. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulm Med 2010;10:6.Web of ScienceGoogle Scholar

  • 5. Kuzovlev A, Moroz V, Goloubev A, Polovnikov S. Biomarkers for early stage of acute respiratory distress syndrome in septic patients: Surfactant protein D and Clara cell protein. Crit Care 2013;17(Suppl 2):P100.CrossrefGoogle Scholar

  • 6. Kurdowska A, Noble JM, Grant IS, Robertson CR, Haslett C, Donnelly SC. Anti-interleukin-8 autoantibodies in patients at respiratory distress syndrome. Crit Med 2002;30:2335-7.CrossrefGoogle Scholar

  • 7. Meduri GU, Headley S, Kohler G, Stentz F, Tolley E, Umberger R, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 1995;107:1062-73.CrossrefGoogle Scholar

  • 8. Donnelly SC, Stricter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patients. Lancet 1993;341:643-7.Google Scholar

  • 9. Miller EJ, Cohen AB, Matthay MA. Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis. Crit Care Med 1996;24:1448-54.CrossrefGoogle Scholar

  • 10. Folksson HG, Matthay MA, Hebert CA, Broaddus VC. Acid aspirationinduced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest 1995;96:107-16.CrossrefGoogle Scholar

  • 11. Marty C, Misset B, Tamion F, Fitting C, Carlet J, Cavaillon JM. Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin. Crit Care Med 1994;22:673-9.CrossrefGoogle Scholar

  • 12. Wacharasint P, Nakada T, Boyd J. Association of IL-8-251A/T with IL-8 expression and risk of severe ARDS in patients with septic shock. Chest 2011;140:206A.Google Scholar

  • 13. Weckbach S, Hohmann C, Denk S, Kellermann P, Huber-Lang MS, Baumann B, et al. Apoptotic and inflammatory signaling via Fas and tumor necrosis factor receptor I contribute to the development of chest trauma-induced septic acute lung injury. J Trauma Acute Care Surg 2013;74:792-800.Web of ScienceCrossrefGoogle Scholar

  • 14. Li T, Luo N, Du L, Zhou J, Zhang J, Gong L, et al. Tumor necrosis factor-α plays an initiating role in extracorporeal circulation-induced acute lung injury. Lung 2013;2:207-14.Web of ScienceCrossrefGoogle Scholar

  • 15. Torii K, Iida K, Miyazaki Y, Saga S, Kondoh Y, Taniguchi H, et al. Higher concentrations of matrix metalloproteinases in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 1997;155:43-6.Google Scholar

  • 16. Pugin J, Verghese G, Widmer MC, Matthay MA. The alveolar space is the site of intense inflammatory and profihrotie reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 1999;27:304-12.CrossrefGoogle Scholar

  • 17. Eichler W, Bechtel JF, Schnmacher J, Wermelt JA, Klotz KF, Bartels C. A rise of MMP-2 and MMP-9 in bronchoalveolar lavage fluid is associated with acute lung injury after cardiopulmonary bypass in a swine model. Perfusion 2003;18:107-13.CrossrefGoogle Scholar

  • 18. Tseng JS, Chan MC, Hsu JY, Kuo BI, Wu CL. Procalcitonin is a valuable prognostic marker in ARDS caused by community-acquired pneumonia. Respirology 2008;13:505-9.CrossrefWeb of ScienceGoogle Scholar

  • 19. Yang QY, Zuo XR, Cao Q. The value of procalcitonin in the differentiation of the cause of fever in patients with severe craniocerebral injury. J Clin Med Pract 2012;16:120-1, 6.Google Scholar

  • 20. Li YH, Zhang X, Guo QY. Clinical observation of C-reactive protein and procalcitonin detection in 126 elderly patients with community acquired pneumonia C. J Clin Med Pract 2012;16:135-7.Google Scholar

  • 21. Qu WX, Tan H, Zheng W, Li P. Serum procalcitonin level in patients with ventilator-associated pneumonia: Clinical significance of its dynamic monitoring. J Logist Univ CAPF (Med Sci) 2012;21:453-4, 8.Google Scholar

  • 22. Meng HT, Ma YZ, He JH, Yang AH. Procalcitonin: An early predictor of pulmonary infection in ischemic stroke. J Logist Univ CAPF (Med Sci) 2011;20:948-50.Google Scholar

  • 23. Tsantes A, Tsangaris I, Kopterides P, Kapsimali V, Antonakos G, Zerva A, et al. The role of procalcitonin and IL-6 in discriminating between septic and non-septic causes of ALI /ARDS: A prospective observational study. Clin Chem Lab Med 2013;51:1535-42.Web of ScienceGoogle Scholar

  • 24. Ramirez P, Kot P, Marti V, Gomez MD, Martinez R, Saiz V, et al. Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in patients with acute respiratory distress syndrome and abdominal diseases: A preliminary observational study. Crit Care 2011;15:R50.Web of ScienceCrossrefGoogle Scholar

  • 25. Oudhuis GJ, Beuving J, Bergmans D, Stobberingh EE, ten Velde G, Linssen CF, et al. Soluble triggering receptor expressed on myeloid cells-1 in bronchoalveolar lavage fluid is not predictive for ventilator-associated pneumonia. Intensive Care Med 2009;35:1265-70.Google Scholar

  • 26. Connelly KG, Moss M, Parsons PE, Moore EE, Moore FA, Giclas PC, et al. Serum ferritin as a predictor of the acute respiratory distress syndrome. Am J Respir Crit Care Med 1997;155:21-5.Google Scholar

  • 27. Sharkey RA, Donnelly SC, Connelly KG, Robertson CE, HaslettC, Repine JE. Initial serum ferritin levels in patients with multiple trauma and the subsequent development of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;159:1506-9.CrossrefGoogle Scholar

  • 28. Cai C, Xu J, Zhong NS. Endothelin-1 and acute lung injury/ acute respiratory distress syndrome. Med J Chin PLA 2010;35:595-7. Google Scholar

About the article

Published Online: 2015-04-24

Published in Print: 2014-12-01


Citation Information: Journal of Translational Internal Medicine, ISSN (Online) 2224-4018, DOI: https://doi.org/10.4103/2224-4018.147740.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in