Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Time Series Econometrics

Editor-in-Chief: Hidalgo, Javier

2 Issues per year

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.236
Source Normalized Impact per Paper (SNIP) 2017: 0.682

See all formats and pricing
More options …

Selecting Instrumental Variables in a Data Rich Environment

Serena Ng / Jushan Bai
Published Online: 2009-04-02 | DOI: https://doi.org/10.2202/1941-1928.1014

Practitioners often have at their disposal a large number of instruments that are weakly exogenous for the parameter of interest. However, not every instrument has the same predictive power for the endogenous variable, and using too many instruments can induce bias. We consider two ways of handling these problems. The first is to form principal components from the observed instruments, and the second is to reduce the number of instruments by subset variable selection. For the latter, we consider boosting, a method that does not require an a priori ordering of the instruments. We also suggest a way to pre-order the instruments and then screen the instruments using the goodness of fit of the first stage regression and information criteria. We find that the principal components are often better instruments than the observed data except when the number of relevant instruments is small. While no single method dominates, a hard-thresholding method based on the t test generally yields estimates with small biases and small root-mean-squared errors.

Keywords: relevant instruments; principal components; information criteria; hard-thresholding; boosting; factor model; panel model

About the article

Published Online: 2009-04-02

Citation Information: Journal of Time Series Econometrics, Volume 1, Issue 1, ISSN (Online) 1941-1928, DOI: https://doi.org/10.2202/1941-1928.1014.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

C. Garcı́a-Martos, J. Rodrı́guez, and M.J. Sánchez
IET Generation, Transmission & Distribution, 2012, Volume 6, Number 1, Page 11
Journal of Money, Credit and Banking, 2009, Volume 41, Number 7, Page 1481

Comments (0)

Please log in or register to comment.
Log in