Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Time Series Econometrics

Editor-in-Chief: Hidalgo, Javier

2 Issues per year

Mathematical Citation Quotient (MCQ) 2016: 0.10

See all formats and pricing
More options …

Asymptotic Theory for Regressions with Smoothly Changing Parameters

Eric Hillebrand / Marcelo C. Medeiros / Junyue Xu
Published Online: 2013-04-30 | DOI: https://doi.org/10.1515/jtse-2012-0024

Abstract: We derive asymptotic properties of the quasi-maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual -rate and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data.

Keywords: regime switching; smooth transition regression; asymptotic theory

JEL Codes: C22


  • Amemiya, T. 1985. Advanced Econometrics. Cambridge: Harvard University Press.Google Scholar

  • Andrews, D. 1992. “Generic Uniform Convergence.” Econometric Theory 8: 241–57.CrossrefGoogle Scholar

  • Andrews, D. W. K., and C. J. McDermott. 1995. “Nonlinear Econometric Models with Deterministically Trending Variables.” Review of Economic Studies 62: 343–60.CrossrefGoogle Scholar

  • Areosa, W., M. McAleer, and M. Medeiros. 2011. “Moment-Based Estimation of Smooth Transition Regression Models with Endogenous Variables.” Journal of Econometrics 165: 100–11.Web of ScienceCrossrefGoogle Scholar

  • Bai, J. 1997. “Estimating Multiple Breaks One at a Time.” Econometric Theory 13: 315–52.CrossrefGoogle Scholar

  • Bai, J., and P. Perron. 1998. “Estimating and Testing Linear Models with Multiple Structural Changes.” Econometrica 66(1):47–78.Google Scholar

  • Billingsley, P. 1999. Convergence of Probability Measures, 2nd edn. New York: Wiley.Google Scholar

  • Chan, K. S., and H. Tong. 1986. “On Estimating Thresholds in Autoregressive Models.” Journal of Time Series Analysis 7: 179–90.CrossrefGoogle Scholar

  • Davidson, J. 1994. Stochastic Limit Theory. Oxford: Oxford University Press.Google Scholar

  • Davies, R. B. 1977: “Hypothesis Testing When the Nuisance Parameter in Present Only Under the Alternative.” Biometrika 64: 247–54.Google Scholar

  • Davies, R. B. 1987. “Hypothesis Testing when the Nuisance Parameter in Present Only Under the Alternative.” Biometrika 74: 33–44.Google Scholar

  • Feder, P. 1975. “On Asymptotic Distribution Theory in Segmented Regression Problems—Identified Case.” Annals of Statistics 3: 49–83.CrossrefGoogle Scholar

  • Hansen, B. E. 1996. “Inference when a Nuisance Parameter Is Not Identified Under the Null Hypothesis.” Econometrica 64: 413–30.CrossrefGoogle Scholar

  • Li, W. K., S. Ling, and M. McAleer. 2002. “Recent Theoretical Results for Time Series Models with GARCH Errors.” Journal of Economic Surveys 16: 245–69.CrossrefGoogle Scholar

  • Lin, C. F. J., and T. Teräsvirta. 1994. “Testing the Constancy of Regression Parameters Against Continuous Structural Change.” Journal of Econometrics 62: 211–28.CrossrefGoogle Scholar

  • Ling, S., and M. McAleer. 2003. “Asymptotic Theory for a Vector ARMA-GARCH Model.” Econometric Theory 19: 280–310.Web of ScienceGoogle Scholar

  • Lundbergh, S., and T. Teräsvirta. 1998. “Modelling Economic High-Frequency Time Series with STAR-STGARCH Models.” Working Paper Series in Economics and Finance 291, Stockholm School of Economics.Google Scholar

  • Luukkonen, R., P. Saikkonen, and T. Teräsvirta. 1988. “Testing Linearity Against Smooth Transition Autoregressive Models.” Biometrika 75: 491–9.CrossrefGoogle Scholar

  • McAleer, M., and M. Medeiros. 2008. “A Multiple Regime Smooth Transition Heterogenous Autoregressive Model for Long Memory and Asymmetries.” Journal of Econometrics 147: 104–19.CrossrefWeb of ScienceGoogle Scholar

  • Medeiros, M., E. Mendes, and L. Oxley. 2009. “Cointegrating Smooth Transition Regressions with a Stationary Transition Variable.” Discussion Paper, Department of Economics, Pontifical Catholic University of Rio de Janeiro.Google Scholar

  • Medeiros, M. C., and A. Veiga. 2003. “Diagnostic Checking in a Flexible Nonlinear Time Series Model.” Journal of Time Series Analysis 24: 461–82.CrossrefGoogle Scholar

  • Medeiros, M. C., and A. Veiga. 2005. “A Flexible Coefficient Smooth Transition Time Series Model.” IEEE Transactions on Neural Networks 16: 97–113.CrossrefGoogle Scholar

  • Mira, S., and A. Escribano. 2000. “Nonlinear Time Series Models: Consistency and Asymptotic Normality of NLS Under New Conditions.” In Nonlinear Econometric Modeling in Time Series Analysis, edited by W. A. Barnett, D. Hendry, S. Hylleberg, T. Teräsvirta, D. Tjøsthein, and A. Würtz, 119–64. Cambridge: Cambridge University Press.Google Scholar

  • Perron, P. 1989. “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis.” Econometrica 57(6):1361–401.Google Scholar

  • Saikkonen, P., and I. Choi. 2004. “Cointegrating Smooth Transition Regressions.” Econometric Theory 20: 301–40.Google Scholar

  • Schwarz, G. 1978. “Estimating the Dimension of a Model.” Annals of Statistics 6: 461–4.CrossrefGoogle Scholar

  • Shiryaev, A. 1996. Probability, 2nd edn. New York: Springer.Google Scholar

  • Strikholm, B. 2006. “Determining the Number of Breaks in a Piecewise Linear Regression Model.” Working Paper Series in Economics and Finance 648, Stockholm School of Economics.Google Scholar

  • Suarez-Fariñas, M., C. E. Pedreira, and M. C. Medeiros. 2004. “Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling.” Journal of the American Statistical Association 99: 1092–107.Google Scholar

  • Teräsvirta, T. 1994. “Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models.” Journal of the American Statistical Association 89: 208–18.Google Scholar

  • Teräsvirta, T. 1998. “Modelling Economic Relationships with Smooth Transition Regressions.” In Handbook of Applied Economic Statistics, edited by A. Ullah and D. E. A. Giles, 507–52. New York: Dekker.Google Scholar

  • Teräsvirta, T., D. Tjøstheim, and C. Granger. 2010. Modelling Nonlinear Economic Time Series. Oxford, UK: Oxford University Press.Google Scholar

  • van Dijk, D., T. Teräsvirta, and P. H. Franses. 2002. “Smooth Transition Autoregressive Models – A Survey of Recent Developments.” Econometric Reviews 21: 1–47.Google Scholar

About the article

Published Online: 2013-04-30

Note that, contrary to the work on multiple structural breaks, for each break there are two nuisance parameter ( and c) instead of one.

Citation Information: Journal of Time Series Econometrics, Volume 5, Issue 2, Pages 133–162, ISSN (Online) 1941-1928, ISSN (Print) 2194-6507, DOI: https://doi.org/10.1515/jtse-2012-0024.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Stan Hurn, Annastiina Silvennoinen, and Timo Teräsvirta
Journal of Applied Econometrics, 2016, Volume 31, Number 4, Page 707

Comments (0)

Please log in or register to comment.
Log in