Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Time Series Econometrics

Editor-in-Chief: Hidalgo, Javier

2 Issues per year


CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.236
Source Normalized Impact per Paper (SNIP) 2017: 0.682

Online
ISSN
1941-1928
See all formats and pricing
More options …

A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models

Márcio Poletti Laurini
  • Corresponding author
  • Department of Economics, FEA-RP USP and associated researcher at CNPq, Ribeirão Preto, São Paulo, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-17 | DOI: https://doi.org/10.1515/jtse-2012-0025

Abstract: In this article, we analyze a maximum likelihood estimator using Data Cloning for Stochastic Volatility models. This estimator is constructed using a hybrid methodology based on Integrated Nested Laplace Approximations to calculate analytically the auxiliary Bayesian estimators with great accuracy and computational efficiency, without requiring the use of simulation methods such as Markov Chain Monte Carlo. We analyze the performance of this estimator compared to methods based on Monte Carlo simulations (Simulated Maximum Likelihood, MCMC Maximum Likelihood) and approximate maximum likelihood estimators using Laplace Approximations. The results indicate that this data cloning methodology achieves superior results over methods based on MCMC, comparable to results obtained by the Simulated Maximum Likelihood estimator. The methodology is extended to models with leverage effects, continuous time formulations, multifactor and multivariate stochastic volatility.

Keywords: Stochastic Volatility; Data Cloning; Maximum Likelihood; MCMC; Laplace Approximations

JEL Codes: C53; E43; G17

References

  • Andersen, T., and B. Sorensen. 1996. “GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study.” Journal of Business and Economic Statistics 14(3):328–52.Google Scholar

  • Andersen, T. G., R. A. Davis, J.-P. Kreib, and T. Mikosch, eds. 2009. Handbook of Financial Time Series. New York: Springer.Google Scholar

  • Asai, M., M. McAleer, and J. Yu. 2006. “Multivariate Stochastic Volatility: A Review.” Econometric Reviews 25(2–3):145–75.CrossrefGoogle Scholar

  • Baghishani, H., H. Rue, and M. Mohammadzadeh. 2012. “On a Hybrid Data Cloning Method and Its Application in Generalized Linear Mixed Models.” Statistics and Computing 22(2):597–613.CrossrefGoogle Scholar

  • Baghishani, H., and M. Mohammadzadeh. 2011. “A Data Cloning Algorithm for Computing Maximum Likelihood Estimates in Spatial Generalized Linear Mixed Models.” Computational Statistics and Data Analysis 55(4):1748–59.CrossrefGoogle Scholar

  • Bakshi, G., C. Cao, and Z. Chen. 1995. “Empirical Performance of Alternative Option Pricing Models.” Journal of Finance 52(5):2003–49.Google Scholar

  • Barndorff-Nielsen, O. E. 1997. “Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling.” Scandinavian Journal of Statistics 24(1):1–13.CrossrefGoogle Scholar

  • Bates, D. 1996. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.” Review of Financial Studies 9(1):69–107.CrossrefGoogle Scholar

  • Broto, C. and E. Ruiz. 2004. “Estimation Methods for Stochastic Volatility Methods: A Survey.” Journal of Economic Surveys 18(5):613–49.CrossrefGoogle Scholar

  • Chernov, M., E. Gallant, R. A. Ghysels, and G. Tauchen. 2003. “Alternative Models for Stock Price Dynamics.” Journal of Econometrics 116(1–2):225–57.CrossrefGoogle Scholar

  • Chernozhukov, V., and H. Hong. 2004. “Likelihood Estimation and Inference in a Class of Nonregular Econometric Models.” Econometrica 72(5):1445–80.CrossrefGoogle Scholar

  • Chib, S., Y. Omori, and M. Asai. 2009. “Multivariate Stochastic Volatility Models.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch, 365–402. New York: Springer.Google Scholar

  • Doucet, A., A. J. Godsill, and C. P. Robert. 2002. “Marginal Maximum a Posteriori Estimation using Markov Chain Monte Carlo.” Statistics and Computing 12(1):77–84.CrossrefGoogle Scholar

  • Doucet, A., and C. P. Robert. 2002. “Maximum a Posteriori Parameter Estimation for Hidden Markov Models.” Unpublished Working Paper.Google Scholar

  • Duffie, J., and J. Pan. 1997. “An Overview of Value at Risk.” The Journal of Derivatives 4(3):7–49.CrossrefGoogle Scholar

  • Eberlein, E., J. Kallsen, and J. Kristen 2003. “Risk Management Based on Stochastic Volatility.” Journal of Risk 5(2):19–44.Google Scholar

  • Gallant, R. A., and G. Tauchen. 1996. “Which Moments to Match.” Econometric Theory 12(4):657–81.CrossrefGoogle Scholar

  • Geweke, J. 1994. “Bayesian Comparison of Econometric Models.” Minneapolis: Federal Reserve of Minneapolis.Google Scholar

  • Gourieroux, C. A., A. Monfort, and E. Renault. 1993. “Indirect Inference.” Journal of Applied Econometrics 8(1):85–118.CrossrefGoogle Scholar

  • Harvey, A. C., E. Ruiz, and N. G. Shephard. 1994. “Multivariate Stochastic Variance Models.” Review of Economic Studies 61(2):247–64.CrossrefGoogle Scholar

  • Harvey, A. C., and N. Shephard. 1996. “Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns.” Journal of Business and Economic Statistics 14(4):429–34.Google Scholar

  • Heston, S. 1993. “A Closed Form Solution for Options with Stochastic Volatility, with Applications to Bond and Currency Options.” Review of Financial Studies 6(2):327–43.CrossrefGoogle Scholar

  • Hull, J., and A. White. 1987. “The Pricing of Options on Assets with Stochastic Volatility.” Journal of Finance 42(2):1–30.Google Scholar

  • Jacquier, E., M. Johannes, and N. Polson. 2007. “MCMC Maximum Likelihood for Latent State Models.” Journal of Econometrics 137(2):615–40.CrossrefGoogle Scholar

  • Jacquier, E., N. Polson, and P. E. Rossi. 1994. “Bayesian Analysis of Stochastic Volatility Models (with Discussions).” Journal of Business and Economic Statistics 12(4):371–417.Google Scholar

  • Jacquier, E., N. Polson, and P. E. Rossi. 2004. “Bayesian Analysis of Stochastic Volatility Models with Fat-Tails and Correlated Errors.” Journal of Econometrics 122(1):185–212.CrossrefGoogle Scholar

  • Johannes, M., and N. Polson. 2009. “MCMC Methods for Financial Time Series.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch. New York: Springer.Google Scholar

  • Jungbacker, B., and S. J. Koopman. 2009. “Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch, 313–44. New York: Springer.Google Scholar

  • Kim, S., N. Shepard, and S. Chib. 1998. “Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models.” Review of Economic Studies 65(3):361–93.CrossrefGoogle Scholar

  • Koopman, S. J., M. I. P. Mallee, and M. Van der Wel. 2010. “Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson-Siegel Model with Time-Varying Parameters.” Journal of Business and Economic Statistics 28(3):329–43.CrossrefGoogle Scholar

  • Lele, S. R., B. Dennis, and F. Lutscher. 2007. “Data Cloning: Easy Maximum Likelihood Estimation for Complex Ecological Models using Bayesian Markov Chain Monte Carlo Estimation.” Ecology Letters 10: 551–63.CrossrefGoogle Scholar

  • Lele, S. R., K. Nadeem, and B. Schmuland. 2010. “Estimability and Likelihood Inference for Generalized Linear Mixed Models using Data Cloning.” Journal of the American Statistical Association 105(492):1617–25.Google Scholar

  • Liesenfeld, R., and J. Richard. 2003. “Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics.” Journal of Empirical Finance 10(4):505–31.CrossrefGoogle Scholar

  • Martino, S., K. Aasb, O. Lindqvist, L. R. Neef, and H. Rue. 2011. “Estimating Stochastic Volatility Models using Integrated Nested Laplace Approximations.” The European Journal of Finance 17(7):487–503.CrossrefGoogle Scholar

  • McNeil, A., R. Frey, and P. Embrechts. 2005. Quantitative Risk Management. Princeton, NJ: Princeton University Press.Google Scholar

  • Melino, A., and S. M. Turnbull. 1990. “Pricing Foreign Currency Options with Stochastic Volatility.” Journal of Econometrics 45(1–2):239–65.CrossrefGoogle Scholar

  • Monfardini, C. 1998. “Estimating Stochastic Volatility Models through Indirect Inference.” Econometrics Journal 1(1):113–28.CrossrefGoogle Scholar

  • Poulsen, R., K. R. Schenk-Hoppe, and C. Ewald. 2009. “Risk Minimization in Stochastic Volatility Models: Model Risk and Empirical Performance.” Quantitative Finance 6: 693–704.CrossrefGoogle Scholar

  • Renault, E. 2009. “Moment-Based Estimation of Stochastic Volatility Models.” In Handbook of Financial Time Series, edited by T. G. Andersen, R. A. Davis, J.-P. Kreib, and T. Mikosch, 269–311. New York: Springer.Google Scholar

  • Robert, C. P. 2010. “Feedback on Data Cloning.” Comment—http://xianblog.wordpress.com/2010/09/22/feedback-on-data-cloning/. Accessed 22September, 2010.

  • Rue, H., S. Martino, and N. Chopin. 2009. “Approximated Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations (with Discussion).” Journal of the Royal Statistical Society series B 71(2):319–92.CrossrefGoogle Scholar

  • Ruiz-Cardenas, R., E. T. Krainski, and H. Rue. 2012. “Direct Fitting of Dynamic Models using Integrated Nested Laplace Approximations.” Computational Statistics and Data Analysis 56(6):1808–28.CrossrefGoogle Scholar

  • Sandmann, G., and S. J. Koopman. 1998. “Estimation of Stochastic Volatility Models Via Monte Carlo Maximum Likelihood.” Journal of Econometrics 87(2):271–301.CrossrefGoogle Scholar

  • Schobel, R., and J. Zhu. 1999. “Stochastic Volatility with an Ornstein-Uhlenbeck Process: An Extension.” European Finance Review 3(1):23–46.Google Scholar

  • Shephard, N., and M. K. Pitt. 1997. “Likelihood Analysis of Non-Gaussian Measurement Time Series.” Biometrika 84(3):653–68.CrossrefGoogle Scholar

  • Shephard, N. G. 1993. “Fitting Non-linear Time Series Models, with Applications to Stochastic Variance Models.” Journal of Applied Econometrics 8: 135–52.CrossrefGoogle Scholar

  • Singleton, K. J. 2006. Empirical Dynamic Asset Pricing. Princeton, NJ: Princeton University Press.Google Scholar

  • Skaug, H. J., and D. Fournier. 2006. “Automatic Approximation of the Marginal Likelihood in Non-Gaussian Hierarchical Models.” Computational Statistics and Data Analysis 51(2):699–709.CrossrefGoogle Scholar

  • Skaug, H. J., and J. Yu. 2008. “Automatic Likelihood Based Inference for Stochastic Volatility Models.” Unpublished Working Paper.Google Scholar

  • Stein, E. M., and J. C. Stein. 1991. “Stock Price Distributions with Stochastic Volatility: An Analytic Approach.” The Review of Financial Studies 4(4):727–52.CrossrefGoogle Scholar

  • Takada, T. 2009. “Simulated Minimum Hellinger Distance Estimation of Stochastic Volatility Models.” Computational Statistics and Data Analysis 53(6):2390–403.CrossrefGoogle Scholar

  • Taylor, S. J. 1986. Modelling Financial Time Series. New York: John Wiley & Sons.Google Scholar

  • Tierney, L., and J. B. Kadane. 1986. “Accurate Approximations for Posterior Moments and Marginal Densities.” Journal of the American Statistical Association 81(392):820–86.Google Scholar

  • Tsyplakov, A. 2010. “Revealing the Arcane: An Introduction to the Art of Stochastic Volatility Models.” Quantile 8: 69–122.Google Scholar

  • Vassilis, A. H. 1999. “Some Practical Issues in Maximum Simulated Likelihood.” Simulation-Based Inference in Econometrics: Methods and Applications. Cambridge: Cambridge University Press.Google Scholar

  • Walker, A. M. 1969. “On the Asymptotic Behavior of Posterior Distributions.” Journal of the Royal Statistical Association, Series B 31(1):80–88.Google Scholar

About the article

Published Online: 2013-05-17


Citation Information: Journal of Time Series Econometrics, Volume 5, Issue 2, Pages 193–229, ISSN (Online) 1941-1928, ISSN (Print) 2194-6507, DOI: https://doi.org/10.1515/jtse-2012-0025.

Export Citation

©2013 by Walter de Gruyter Berlin / Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
MÁrcio Poletti Laurini and Luiz Koodi Hotta
Journal of Forecasting, 2014, Volume 33, Number 3, Page 214

Comments (0)

Please log in or register to comment.
Log in