Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Time Series Econometrics

Editor-in-Chief: Hidalgo, Javier

2 Issues per year

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.236
Source Normalized Impact per Paper (SNIP) 2017: 0.682

See all formats and pricing
More options …

Bootstrap Point Optimal Unit Root Tests

Liqiong Wang
Published Online: 2013-07-26 | DOI: https://doi.org/10.1515/jtse-2013-0006


In this article, we investigate and compare the behaviour of some bootstrap unit root tests in finite ARMA models with a constant and/or a trend and use them to obtain asymptotic results for the point optimal (hereafter PO) test, in terms of both size and power. We demonstrate the asymptotic validity of bootstrapping the PO test. We provide a feasible method for obtaining approximate critical values for the PO unit root test. Through simulations, we investigate how effective the bootstrap is in different sample sizes, correlative coefficients and close unity autoregressive roots in two different models. Our main objective is to show that the bootstrap PO test can be used in regression models with AR and MA errors and trending regressors. The results reported here provide an analytical investigation of the use of the bootstrap for PO tests with dependent data.The main contribution of this article has two features. First, we choose the PO test and make this powerful but unfeasible procedure both powerful and feasible, by plugging in a consistent estimation of the coefficient structure, and we show that the bootstrap PO test provides asymptotically valid critical values. Second, through simulation, our numerical results suggest that the bootstrap PO test performs well in having the correct size properties and retaining good power in the parametric (and semi-parametric) bootstrap procedure.

Keywords: unit root; point optimal tests; bootstrap; ARMA models


  • Beran, R. 1988. “Prepivoting test statistics: A bootstrap view of asymptotic refinements.” Journal of American Statistical Association, 83, 687–697.Google Scholar

  • Berkowitz, J., and L. Kilian. 2000. “Recent Developments in Bootstrapping Time Series.” Econometric Reviews 19(1):1–48.CrossrefGoogle Scholar

  • Bhatti, M.I., M.Z. Hossain, and H. AI-Shanfari. 2006. Econometric Analysis of Model Selection and Model Testing. Ashgate Publishing Limited, Gower House, Croft Road, Aldershot, Hamshire, GU11 3HR, England, UK.Google Scholar

  • Bühlmann, P. 1995. “Moving-Average Representation of Autoregressive Approximations.” Stochastic Processes and Their Applications 60:331–42.Google Scholar

  • Cavaliere, G., and A.M.R. Taylor. 2009. “Bootstrap M Unit Root Tests.” Econometric Reviews 28(5):393–421.Web of ScienceCrossrefGoogle Scholar

  • Chang, Y., and J.Y. Park. 2002. “On the Asymptotics of ADF Tests for Unit Roots.” Econometric Reviews 21:431–47.Google Scholar

  • Dickey, D.A., and W.A. Fuller. 1979. “Distribution of the Estimators or Autoregressive Time Series with a Unit Root.” Journal of the American Statistical Association 74(366):427–31.Google Scholar

  • Dufour, J.M., and M.L. King. 1991. “Optimal Invariant Test for the Autocorrelation Coefficient in Linear Regressions with Stationary or Nonstationary AR(1) Errors.” Journal of Econometrics 47(1):115–43.CrossrefGoogle Scholar

  • Efron, B. 1979. “Bootstrap Methods: Another Look at Jackknife.” The Annals of Statistics, 7(1):1–26.CrossrefGoogle Scholar

  • Elliott, G., T.J. Rothenberg, and J.H. Stock. 1996. “Efficient Tests for an Autoregressive Unit Root.” Econometrica 64(4):813–36.CrossrefGoogle Scholar

  • Francke, M.K., and A.F. Vos. 2007. “Marginal Likelihood and Unit Roots.” Journal of Econometrics 137:708–28.Web of ScienceGoogle Scholar

  • Hall, P., and J.L. Horowitz. 1996. “Bootstrap Critical Values for Tests based on Generalized-Method-of-Moments Estimators.” Econometrica 64(4):891–916.CrossrefGoogle Scholar

  • Kreiss, J.P., and J. Franke. 1992. “Bootstrapping Stationary Autoregressive Moving-Average Models.” Journal of Time Series Analysis 13:287–317.Google Scholar

  • Li, H., and G.S. Maddala. 1996. “Bootstrapping Time Series Models.” Econometric Reviews 15:115–58.Google Scholar

  • Marsh, P. 2007. “Constructing Optimal Tests on a Lagged Dependent Variable.” Journal of Time Series Analysis 28(5):723–43.Web of ScienceCrossrefGoogle Scholar

  • Marsh, P. 2009. “The Properties of Kullback-Leibler Divergence for the Unit Root Hypothesis.” Econometric Theory 25(6):1662–81.CrossrefWeb of ScienceGoogle Scholar

  • Marsh, P. 2010. “Saddlepoint and Estimated Saddlepoint Approximations for Optimal Unit Root Tests.” submitted for the Granger Centre 2008 Conference Special Issue of Econometric Theory on Bootstrap and Numerical Methods in Time Series.Google Scholar

  • Ng, S., and P. Perron. 2001. “Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power.” Econometrica 69:1519–54.Google Scholar

  • Palm, F.C., S. Smeekes, and J.-P. Urbain. 2008. “Bootstrap Unit-Root Tests: Comparison and Extensions.” Journal of Time Series Analysis 9(2):371–401.CrossrefWeb of ScienceGoogle Scholar

  • Perron, P., and S. Ng. 1996. “Useful Modifications to Unit Root Tests with Dependent Errors and their Local Asymptotic Properties.” Review of Economic Studies 63:435–565.Google Scholar

  • Richard, P. 2007. “Sieve Bootstrap Unit Root Tests.” Cahiers de recherche 07–05, Department d’Economique de la Faculte d’administation à l’ Universite de Sherbrooke.Google Scholar

  • Said, S.E., and D.A. Dickey. 1984. “Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order.” Biometrika 71:599–608.Google Scholar

  • Schwert, G.W. 1989. “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business & Economic Statistics 7(2):147–59.Google Scholar

  • Swensen, A.R. 2003. “A Note on the Power of Bootstrap Unit Root Tests.” Econometric Theory 19:32–48.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-07-26

Citation Information: Journal of Time Series Econometrics, Volume 6, Issue 1, Pages 1–31, ISSN (Online) 1941-1928, ISSN (Print) 2194-6507, DOI: https://doi.org/10.1515/jtse-2013-0006.

Export Citation

©2014 by Walter de Gruyter Berlin / Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in