Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Time Series Econometrics

Editor-in-Chief: Hidalgo, Javier

2 Issues per year

CiteScore 2017: 0.25

SCImago Journal Rank (SJR) 2017: 0.236
Source Normalized Impact per Paper (SNIP) 2017: 0.682

Mathematical Citation Quotient (MCQ) 2016: 0.10

See all formats and pricing
More options …

Recursive Adjustment for General Deterministic Components and Improved Cointegration Rank Tests

Benjamin Born / Matei Demetrescu
  • Corresponding author
  • Institute for Statistics and Econometrics, Christian-Albrechts-University of Kiel, Olshausenstr. 40-60, D-24118 Kiel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-21 | DOI: https://doi.org/10.1515/jtse-2013-0005


This paper discusses tests for the cointegration rank of integrated vector autoregressions when the series are recursively adjusted for deterministic components. To this end, the asymptotic properties of recursive, or adaptive, procedures for the removal of general additive deterministic components are analyzed in two different, complementary, situations. When the stochastic component of the examined time series is weakly stationary (as would be the equilibrium errors), the effect of recursive adjustment vanishes with increasing sample size. When the suitably normalized stochastic component converges weakly to some limiting continuous-time process with integrable paths (as would be the case with the common stochastic trends), recursive adjustment has a permanent effect even asymptotically: the normalized recursively adjusted process converges weakly to a recursively adjusted version of the limiting process. The null limiting distributions of the cointegration rank tests can be expressed in terms of recursively adjusted Brownian motions. Moreover, the finite-sample properties of the cointegration rank tests with recursive adjustment are examined in cases of empirical relevance: the considered deterministic components are a constant, and a constant and a linear trend, respectively. Compared to the likelihood ratio tests or the tests with generalized least squares adjustment, improvements in terms of empirical rejection frequencies under the null are found in finite samples; improvements are found under the alternative as well, with the likelihood ratio test performing increasingly better as the magnitude of the initial condition increases. Regarding rank selection, a very simple combination of the three testing procedures with different adjustments performs best.

Keywords: adaptive detrending; vector autoregressive process; long-run relation; LR-type test

JEL Classification: C12 (hypothesis testing); C32 (time-series models)


  • Ahlgren, N., and M. Juselius. 2012. “Tests for Cointegration Rank and the Initial Condition.” Empirical Economics 42(3):667–91.Web of ScienceCrossrefGoogle Scholar

  • Bayer, C., and C. Hanck. 2013. “Combining Non-Cointegration Tests.” Journal of Time Series Analysis 34(1):83–95.CrossrefWeb of ScienceGoogle Scholar

  • Chang, Y. 2002. “Nonlinear IV Unit Root Tests in Panels with Cross-Sectional Dependency.” Journal of Econometrics 110(2):261–92.CrossrefGoogle Scholar

  • Cheng, X., and P. C. B. Phillips. 2009. “Semiparametric Cointegrating Rank Selection.” The Econometrics Journal 12(Suppl. S1):S83–104.CrossrefGoogle Scholar

  • Demetrescu, M., H. Lütkepohl, and P. Saikkonen. 2009. “Testing for the Cointegrating Rank of a Vector Autoregressive Process with Uncertain Deterministic Trend Term.” The Econometrics Journal 12(3):414–35.CrossrefGoogle Scholar

  • Doornik, J. A., D. F. Hendry, and B. Nielsen. 1998. “Inference in Cointegrating Models: UK M1 Revisited.” Journal of Economic Surveys 12(5):533–72.CrossrefGoogle Scholar

  • Elliott, G., and U. K. Müller. 2006. “Minimizing the Impact of the Initial Condition on Testing for Unit Roots.” Journal of Econometrics 135:285–310.CrossrefGoogle Scholar

  • Elliott, G., T. J. Rothenberg, and J. H. Stock. 1996. “Efficient Tests for an Autoregressive Unit Root.” Econometrica 64(4):813–36.CrossrefGoogle Scholar

  • Harvey, D. I., S. J. Leybourne, and A. M. R. Taylor. 2009. “Unit Root Testing in Practice: Dealing with Uncertainty Over the Trend and Initial Condition.” Econometric Theory 25(3):587–636.Web of ScienceCrossrefGoogle Scholar

  • Johansen, S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University Press.Google Scholar

  • Kurtz, T. G., and P. Protter. 1991. “Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations.” Annals of Probability 19(3):1035–70.CrossrefGoogle Scholar

  • Kuzin, V. 2005. “Recursive Demeaning and Deterministic Seasonality.” Statistics & Probability Letters 72(3):195–204.CrossrefGoogle Scholar

  • Leybourne, S., T. H. Kim, and P. Newbold. 2005. “Examination of Some More Powerful Modifications of the Dickey–Fuller Test.” Journal of Time Series Analysis 26(3):355–69.CrossrefGoogle Scholar

  • Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. Berlin: Springer.Google Scholar

  • Lütkepohl, H., and P. Saikkonen. 2000. “Testing for the Cointegrating Rank of a VAR Process with a Time Trend.” Journal of Econometrics 95(1):177–98.CrossrefGoogle Scholar

  • Lütkepohl, H., P. Saikkonen, and C. Trenkler. 2001. “Maximum Eigenvalue versus Trace Tests for the Cointegrating Rank of a VAR Process.” Econometrics Journal 4(2):8.CrossrefGoogle Scholar

  • Lütkepohl, H., P. Saikkonen, and C. Trenkler. 2004. “Testing for the Cointegrating Rank of a VAR Process with Level Shift at Unknown Time.” Econometrica 72(2):647–62.CrossrefGoogle Scholar

  • Meng, M., H. Lee, M. H. Cho, and J. Lee. 2013. “Impacts of the Initial Observation on Unit Root Tests Using Recursive Demeaning and Detrending Procedures.” Economics Letters 120(2):195–99.CrossrefWeb of ScienceGoogle Scholar

  • Müller, U. K., and G. Elliott. 2003. “Tests for Unit Roots and the Initial Condition.” Econometrica 71(4):1269–86.CrossrefGoogle Scholar

  • Nielsen, B., and A. Rahbek. 2000. “Similarity Issues in Cointegration Analysis.” Oxford Bulletin of Economics and Statistics 62(1):5–22.CrossrefGoogle Scholar

  • Phillips, P. C. B. 1987. “Time Series Regression with a Unit Root.” Econometrica 55(2):277–301.CrossrefGoogle Scholar

  • Phillips, P. C. B. 1988. “Weak Convergence of Sample Covariance Matrices to Stochastic Integrals via Martingale Approximations.” Econometric Theory 4(3):528–33.CrossrefGoogle Scholar

  • Phillips, P. C. B., and S. N. Durlauf. 1986. “Multiple Time Series Regression with Integrated Processes.” The Review of Economic Studies 53(4):473–95.CrossrefGoogle Scholar

  • Poskitt, D. S., and H. Lütkepohl. 1995. “Consistent Estimation of the Number of Cointegration Relations in a Vector Autoregressive Model.” In Econometrics in Theory and Practice. Festschrift for Hans Schneeweiß, edited by R. Galata and H. Küchenhoff, 87–100. Berlin: Physica-Verlag.Google Scholar

  • Rodrigues, P. M. M. 2006. “Properties of Recursive Trend-Adjusted Unit Root Tests.” Economics Letters 91(3):413–19.CrossrefGoogle Scholar

  • Rodrigues, P. M. M. 2013. “Recursive Adjustment, Unit Root Tests and Structural Breaks.” Journal of Time Series Analysis 34(1):62–82.CrossrefWeb of ScienceGoogle Scholar

  • Saikkonen, P., and R. Luukkonen. 1997. “Testing Cointegration in Infinite Order Vector Autoregressive Processes.” Journal of Econometrics 81(1):93–126.CrossrefGoogle Scholar

  • Saikkonen, P., and H. Lütkepohl. 1999. “Local Power of Likelihood Ratio Tests for the Cointegrating Rank of a VAR Process.” Econometric Theory 15(1):50–78.CrossrefGoogle Scholar

  • Saikkonen, P., and H. Lütkepohl. 2000a. “Testing for the Cointegrating Rank of a VAR Process with an Intercept.” Econometric Theory 16(3):373–406.CrossrefGoogle Scholar

  • Saikkonen, P., and H. Lütkepohl. 2000b. “Trend Adjustment Prior to Testing for the Cointegrating Rank of a Vector Autoregressive Process.” Journal of Time Series Analysis 21(4):435–56.CrossrefGoogle Scholar

  • Shin, D. W., and B. S. So. 2001. “Recursive Mean Adjustment for Unit Root Tests.” Journal of Time Series Analysis 22(5):595–612.CrossrefGoogle Scholar

  • So, B. S., and D. W. Shin. 1999. “Recursive Mean Adjustment in Time-Series Inferences.” Statistics & Probability Letters 43(1):65–73.CrossrefGoogle Scholar

  • Sul, D., P. C. B. Phillips, and C. Y. Choi. 2005. “Prewhitening Bias in HAC Estimation.” Oxford Bulletin of Economics & Statistics 67(4):517–46.CrossrefGoogle Scholar

  • Taylor, A. M. R. 2002. “Regression-Based Unit Root Tests with Recursive Mean Adjustment for Seasonal and Nonseasonal Time Series.” Journal of Business & Economic Statistics 20(2):269–81.CrossrefGoogle Scholar

  • Toda, H. Y. 1994. “Finite Sample Properties of Likelihood Ratio Tests for Cointegrating Ranks When Linear Trends Are Present.” Review of Economics and Statistics 76(1):66–79.CrossrefGoogle Scholar

  • Trenkler, C. 2003. “A New Set of Critical Values for Systems Cointegration Tests with a Prior Adjustment for Deterministic Terms.” Economics Bulletin 3(11):1–9.Google Scholar

  • Zivot, E., and D. W. K. Andrews. 1992. “Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis.” Journal of Business & Economic Statistics 10(3):251–70.Google Scholar

About the article

Published Online: 2015-05-21

Published in Print: 2015-07-01

Citation Information: Journal of Time Series Econometrics, Volume 7, Issue 2, Pages 143–179, ISSN (Online) 1941-1928, ISSN (Print) 2194-6507, DOI: https://doi.org/10.1515/jtse-2013-0005.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in