Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

4 Issues per year


IMPACT FACTOR Bull Vet Inst Pulawy 2016: 0.462

CiteScore 2016: 0.46

SCImago Journal Rank (SJR) 2015: 0.230
Source Normalized Impact per Paper (SNIP) 2015: 0.383

Open Access
Online
ISSN
2450-8608
See all formats and pricing
More options …

Selected aspects related to epidemiology, pathogenesis, immunity, and control of African swine fever

Grzegorz Woźniakowski / Magdalena Frączyk / Krzysztof Niemczuk / Zygmunt Pejsak
Published Online: 2016-05-28 | DOI: https://doi.org/10.1515/jvetres-2016-0017

Abstract

African swine fever (ASF) is currently one of the most severe viral infections of domestic pigs, wild boars, and other hosts belonging to Suidae family. ASF is also considered as the most complex and devastating infectious and haemorrhagic disease of swine due to its severe socio-economic impact and transboundary character. ASF it is a notifiable disease and due to the lack of specific treatment and vaccine, the disease can be only limited by the administrative measures comprising wild boar hunting and stamping out of affected pigs. ASF occurred for the first time in Kenya in 1921 while in Europe (Portugal) the virus was detected at the end of the 1950s. In spite of successful eradication of this threat in a number of affected regions, the virus remains endemic in both feral and domestic pigs in Africa and Sardinia. The ‘new era’ of ASF started in 2007 after its re-introduction to Georgia. Following its intensive expansion, the virus spread to other Caucasian countries, including the territory of the Russian Federation. In 2014 the virus reached Ukraine, Belarus, and, consequently, European Union countries: Lithuania, Latvia, Estonia, and Poland. The occurrence of ASF in wild boars and pigs had a severe impact on both epidemiology and economy because of the national and international transport and trade consequences. Up to date, starting from the February 2014, eighty ASF cases in wild boar and three outbreaks in domestic pigs have been diagnosed. Taking into account the diverse rate of spread in Poland, this review aims to present and discuss the current state of knowledge on ASF including its epidemiology, pathology, transmission, and perspectives of control.

Keywords: African swine fever; epidemiology; pathology; transmission; control; review

References

  • 1. Bastos A.D., Penright M.L., Cricière C., Edrich J.L., Hutchings G., Roger F., Couacy-Hymann E.R., Thomson G.: Genotyping field isolates of African swine fever virus by partial p72 gene characterisation. Arch Virol 2003, 148, 693–706.Google Scholar

  • 2. Blasco R., Aguero M., Almendral J.M., Vinuela E.: Variable and constant regions in African swine fever virus DNA. Virology 1989, 168, 330–338.Google Scholar

  • 3. Blome S., Gabriel C., Beer M.: Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res 2013, 173, 122–130.Web of ScienceGoogle Scholar

  • 4. Boinas F.S., Wilson A.J., Hutchings G.H., Martins C., Dixon L.J.: The persistence of African swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in Portugal. PLoS ONE 2011, 6, e20383.CrossrefWeb of ScienceGoogle Scholar

  • 5. Carrascosa J.L., Carazo J.M., Carrascosa A.L., Garcia N., Santisteban A., Viñuela E.: General morphology and capsid fine structure of African swine fever virus particles. Virology 1984, 132, 160–172.Google Scholar

  • 6. Correia S., Ventura S., Parkhouse R.M.: Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res 2013, 173, 87–100.Web of ScienceGoogle Scholar

  • 7. Costard S., Mur L., Lubroth J., Sanchez-Vizcaino J.M., Pfeiffer D.U.: Epidemiology of African swine fever virus. Virus Res 2013, 173, 191–197.Google Scholar

  • 8. De Carvalho Ferreira H.C, Zúquete S.T., Wijnveld M., Weesendorp E., Jongejan F., Stegeman A., Loeffen W.L.: No evidence of African swine fever virus replication in hard ticks. Ticks Tick-borne Dis 2014, 5, 582–589.Google Scholar

  • 9. Diaz A.V., Netherton C.L., Dixon L.K., Wilson A.J.: African swine fever virus strain Georgia 2007/1 in Ornithodoros erraticus ticks. Emerg Infect Dis 2012, 18, 1026–1028.Google Scholar

  • 10. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., Liverani E., Nix R., Silk R., Zhang F.: African swine fever virus proteins involved in evading host defence systems.” Vet Immunol Immunopathol 2004, 100, 117–134.Google Scholar

  • 11. Dixon L.K., Escribano J.M., Martins C., Rock D.L., Salas M.L., Wilkinson P.J. In: Virus Taxonomy. VIII. Report of the ICTV, edited by Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball L.A., Elsevier Academic Press, London 2005, pp. 135–143.Google Scholar

  • 12. Gallardo C., Mwaengo D.M., Macharia J.M., Arias M., Taracha E.A., Soler A., Okoth E., Martin E., Kasiti J., Bishop R.P.: Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes 2009, 38, 85–95.Web of ScienceGoogle Scholar

  • 13. Gomez-Puertas P., Rodriguez F., Oviedo J.M., Ramiro-Ibanez F., Ruiz-Gonzalvo F., Alonso C., Escribano J.M.: Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol 1996, 70, 5689–5694.Google Scholar

  • 14. Gomez-Puertas P., Oviedo J.M., Rodriguez F., Coll J., Escribano J.M.: Neutralization susceptibility of African swine fever virus is dependent on the phospholipid composition of viral particles. Virology 1997, 228, 180–189.Google Scholar

  • 15. Gonzales A., Talavera A., Almendral J.M., Vinuela E.: Hairpin loop structure of African swine fever virus-DNA. Nucleic Acids Res 1986, 14, 6835–6844.CrossrefGoogle Scholar

  • 16. Guinat C., Gogin A., Blome S., Keil G., Pollin R., Pfeiffer D.U., Dixon L.: Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet Rec 2016, 178, 262–267.Web of ScienceGoogle Scholar

  • 17. Hess W.R.: African swine fever: a reassessment. Adv Vet Sci Comp Med 1981, 25, 39–69.Google Scholar

  • 18. Hubálek Z., Rudolf I.: Tick-borne viruses in Europe. Parasitol Res 2012, 111, 9–36.Google Scholar

  • 19. Karalova E., Zakaryan H., Voskanyan H., Arzumanyan H., Hakobyan A., Nersisyan N., Saroyan D., Karalyan N., Tatoyan M., Akopian J., Gazaryantz M., Mkrtchyan Z., Pogosyan l., Nersesova L., Karalyan Z.: Clinical and post-mortem investigations of genotype II induced African swine fever. Porcine Res 2015, 5, 1–11.Google Scholar

  • 20. Leitao A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R.M., Portugal F., Vigario J.D., Martins C.L.: The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol 2001, 82, 513–523.Google Scholar

  • 21. Leitao A., Mulau A., Cornelis P., Martins C.L.V.: Identification of a 25-amino acid sequence from the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system. J Virol Methods 1998, 75, 113–119.Google Scholar

  • 22. Loh J., Guoyan Z., Presti R.,M., Holtz L.R., Finkbeiner S. R., Droit L., Villasana Z., Todd C., Pipas J.L., Calgua B., Girones R., Wang D., Virgin H. W.: Detection of novel sequence related to African swine fever virus in human serum and sewage. J Virol 2009, 83, 13019–13025.Google Scholar

  • 23. Lubisi B.A., Bastos A.D., Dwarka R.M., Vosloo W.: Molecular epidemiology of African swine fever in East Africa. Arch Virol 2005, 150, 2439–2452.Google Scholar

  • 24. Martins C.L.V., Leitao A.C.: Porcine immune responses to African swine fever virus (ASFV) infection. Vet Immunol Immunopathol 1994, 43, 99–106.Google Scholar

  • 25. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L.: Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004, 319, 337–342.Google Scholar

  • 26. Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L.: Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 1994, 198, 350–354.Google Scholar

  • 27. Oura C.A., Denyer M.S., Takamatsu H., Parkhouse R.M.: In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 2005, 86, 2445–2450.Google Scholar

  • 28. Oura C.A.L., Edwards L., Batten C.A.: Virological diagnosis of African swine fever – Comparative study of available tests. Virus Res 2013, 173, 150–158.Web of ScienceGoogle Scholar

  • 29. Penrith M.L., Vosloo W.: Review of African swine fever: transmission, spread and control. J S Afr Vet Assoc 2009, 80, 58–62.Google Scholar

  • 30. Ramiro-Ibanez F., Ortega A., Brun A., Escribano J.M., Alonso C.: Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. J Gen Virol 1996, 77, 2209–2219.Google Scholar

  • 31. Rouillier I., Brookes S.M., Hyatt A.D., Windsor M., Wileman T.: African swine fever virus is wrapped by the endoplasmic reticulum. J Virol 1998, 72, 2373–2387.Google Scholar

  • 32. Rowlands R.J., Michaud V., Heath L., Hutchings G., Oura C., Vosloo W., Dwarka R., Onashvili T., Albina E., Dixon L.K.: African swine fever virus isolate Georgia 2007. Emerg Infect Dis 2008, 14, 1870–1874.Web of ScienceGoogle Scholar

  • 33. Ruiz Gonzalevo F., Carnero M.E., Caballero C., Martinez J.: Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am J Vet Res 1986, 47, 1249–1252.Google Scholar

  • 34. Sánchez-Vizcaíno J.M., Arias M.: African swine fever. In: Diseases of swine. Edited by Zimmerman J., Karriker L., Ramirez A., Schwartz K., Stevenson G., Blackwell Publishing Professional, Ames, Iowa 2012, pp. 396–404.Google Scholar

  • 35. Sánchez-Vizcaíno J.M., Mur L., Gomez-Villamandos J.C., Carrasco L.: An update on the epidemiology and pathology of African swine fever. J Comp Path 2015, 152, 9–21.Google Scholar

  • 36. Sánchez-Vizcaíno J.M., Mur L., Bastos A.D., Penrith M.L.: New insights into the role of ticks in African swine fever epidemiology. Rev Sci Tech 2015, 34, 503–511.Google Scholar

  • 37. Schlafer D.H., Mebus C.A., McVicar J.W.: African swine fever in neonatal pigs - passively acquired protection from colostrum or serum of recovered pigs. Am J Vet Res 1984, 45, 1367–1372.Google Scholar

  • 38. Sogo J.M., Almendral J.M., Talavera A., Vinuela E.: Terminal and internal inverted repetitions in African swine fever virus DNA. Virology 1984, 133, 271–275.Google Scholar

  • 39. Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M., Argilaguet J.M., Netherton C.L., Oura C.A., Martins C., Rodriguez F.: Cellular immunity in ASFV responses. Virus Res 2013, 173, 110–121.Web of ScienceGoogle Scholar

  • 40. Yanez R.J., Rodriguez J.M., Nogal M.L., Yuste L., Enriquez C., Rodriguez J.F., Vinuela E.: Analysis of the complete nucleotide sequence of African swine fever virus. Virology 1995, 208, 249–278.Google Scholar

  • 41. Zakaryan H., Revilla Y.: African swine fever virus: current state and future perspectives in vaccine and antiviral research. Vet Microbiol 2016, 185, 15–19.Web of ScienceGoogle Scholar

About the article

Received: 2015-12-21

Accepted: 2016-05-09

Published Online: 2016-05-28

Published in Print: 2016-06-01


Citation Information: Journal of Veterinary Research, Volume 60, Issue 2, Pages 119–125, ISSN (Online) 2450-8608, DOI: https://doi.org/10.1515/jvetres-2016-0017.

Export Citation

© 2016 Grzegorz Woźniakowski et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Katja Schulz, Christoph Staubach, and Sandra Blome
Veterinary Research, 2017, Volume 48, Number 1

Comments (0)

Please log in or register to comment.
Log in