Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

4 Issues per year

IMPACT FACTOR Bull Vet Inst Pulawy 2016: 0.462

CiteScore 2016: 0.46

SCImago Journal Rank (SJR) 2015: 0.230
Source Normalized Impact per Paper (SNIP) 2015: 0.383

Open Access
See all formats and pricing
More options …

Mechanisms of tumour escape from immune surveillance

Urszula Lisiecka
  • Corresponding author
  • Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine University of Life Sciences, 20-950 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Kostro
  • Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine University of Life Sciences, 20-950 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-17 | DOI: https://doi.org/10.1515/jvetres-2016-0068


The progressive growth and spread of tumour cells in the form of metastases requires an interaction of healthy host cells, such as endothelial cells, fibroblasts, and other cells of mesenchymal origin with immune cells taking part in innate and adaptive responses within the tumour lesion and entire body. The host cells interact with tumour cells to create a dynamic tumour microenvironment, in which healthy cells can both positively and negatively influence the growth and spread of the tumour. The balance of cellular homeostasis and the effect of substances they secrete on the tumour microenvironment determine whether the tumour has a tendency to grow or disappear, and whether the cells remain within the lesion or are capable of metastasis to other regions of the body. Intercellular interactions also determine the tumour’s susceptibility to radiation or other types of cancer treatment. They may also be a rational explanation for differences in treatment outcomes, in which some metastases regress and others progress in response to the same treatment method.

Keywords: cancer immunology; immune surveillance; immunosuppression; tumour escape; regulatory T lymphocytes


  • 1. Azuma M.: Role of the glucocorticoid-induced TNFR-related protein (GITR)-GITR ligand pathway in innate and adaptive immunity. Crit Rev Immunol 2010, 30, 547-557.CrossrefGoogle Scholar

  • 2. Baltz K.M., Krusch M., Bringmann A., Brossart P., Mayer F., Kloss M., Baessler T., Kumbier I., Peterfi A., Kupka S., Kroeber S., Menzel D, Radsak M.P., Rammensee H.G., Salih H.R.: Cancer immunoediting by GITR (glucocorticoid-induced TNFrelated protein) ligand in humans: NK cell/tumor cell interactions. FASEB J 2007, 21, 2442-2454.CrossrefGoogle Scholar

  • 3. Beatty G.L., Gladney W.L.: Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2015, 21, doi:CrossrefGoogle Scholar

  • 4. Beyer M., Schultze J.L.: Regulatory T cells: major players in the tumor microenvironment. Curr Pharm Des 2009, 15, 1879-1892.CrossrefGoogle Scholar

  • 5. Biller B.J., Elmslie R.E., Burnett R.C., Avery A.C., Dow S.W.: Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer. Vet Immunol Immunopathol 2007, 116, 69-78.CrossrefGoogle Scholar

  • 6. Biswas S.K., Lewis C.E.: NF-κB as a central regulator of macrophage function in tumors. J Leukoc Biol 2010, 88, 877-884.Google Scholar

  • 7. Candolfi M., Curtin J.F., Yagiz K., Assi H., Wibowo M.K., Alzadeh G.E., Foulad D., Muhammad A.K.M.G., Salehi S., Keech N., Puntel M., Liu Ch., Sanderson N.R., Kroeger K.M., Dunn R., Martins G., Lowenstein P.R., Castro M.G.: B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 2011, 13, 947-960.CrossrefGoogle Scholar

  • 8. Cohen A.D., Schaer D.A., Liu C., Li Y., Hirschhorn- Cymmerman D., Kim S.C.: Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS ONE 2010, 5, e10436. doi:CrossrefGoogle Scholar

  • 9. Colotta F., Allavena P., Sica A., Garlanda C., Mantovani A.: Cancer related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009, 30, 1073-1081.CrossrefGoogle Scholar

  • 10. Condamine T., Ramachandran I., Youn J., Gabrilovich D.I.: Regulation of tumor metastasis by myeloid-derived suppressor cells. Ann Rev Med 2015, 66, 97-110.Google Scholar

  • 11. Contardi E., Palmisano G.L., Tazzari P.L., Martelli A.M., Falà F., Fabbi M., Kato T., Lucarelli E., Donati D., Polito L., Bolognesi A., Ricci F., Salvi S., Gargaglione V., Mantero S., Alberghini M., Ferrara G.B., Pistillo M.P.: CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 2005, 117, 538-550.Google Scholar

  • 12. Facciabene A., Motz G.T., Coukos G.: T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 2012, 72, 2162-2171.Google Scholar

  • 13. Galon J., Costes A., Sanchez-Cabo F., Kirilovsky A., Mlecnik B., Lagorce-Pagès C., Tosolini M., Camus M., Berger A., Wind P., Zinzindohoué F., Bruneval P., Cugnenc P.H., Trajanoski Z., Fridman W.H., Pagès F.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960-1964.Google Scholar

  • 14. Garden O.A., Pinheiro D., Cunninghamb F.: All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 2011, 11, 576-588.CrossrefGoogle Scholar

  • 15. Gastman B.R., Johnson D.E., Whiteside T.L., Rabinowich H.: Tumor-induced apoptosis of T lymphocytes: elucidation of intracellular apoptotic events. Blood 2000, 95, 2015-2023.Google Scholar

  • 16. Goldberg M.V., Drake C.G.: LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol 2011, 344, 269-278.Google Scholar

  • 17. Hayashi T., Horiuchi A., Sano K., Hiraoka N., Kasai M., Ichimura T., Sudo T., Tagawa Y., Nishimura R., Ishiko O., Kanai Y., Yaegashi N., Aburatani H., Shiozawa T., Konishi I.: Potential role of LMP2 as tumor-suppressor defines new targets for uterine leiomyosarcoma therapy. Sci Rep 2011, 1, 180, doi:CrossrefGoogle Scholar

  • 18. Huye L.E., Dotti G.: Designing T cells for cancer immunotherapy. Discov Med 2010, 47, 297-303.Google Scholar

  • 19. Ichim T.E., Zhong Z., Kaushal S., Zheng X., Ren X., Hao X., Joyce J.A., Hanley H.H., Riordan N.H., Koropatnick J., Bogin V., Minev B.R., Min W., Tullis R.H.: Exosomes as a tumor immune escape mechanism: possible therapeutic implications. J Transl Med 2008, 6, 37 http://www.translationalmedicine.com/content/6/1/37.Google Scholar

  • 20. Jagła M., Cichocka-Jarosz E.: Regulatory lymphocytes. Alerg Astma Immun 2007, 12, 22-29.Google Scholar

  • 21. Ji H.B., Liao G., Faubion W.A., Abadia-Molina A.C., Cozzo C., Laroux F.S., Caton A., Terhorst C.: Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol 2004, 172, 5823-5827.Google Scholar

  • 22. Jiabei H., Ying H., Mingming H., Baolan L.: Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 2015, 5, doi:CrossrefGoogle Scholar

  • 23. Johnsen A.K., Templeton D.J., Sy M., Harding C.V.: Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 1999, 163, 4224-4231.Google Scholar

  • 24. Kaufman H.L., Disis M.L.: Immune system versus tumor: shifting the balance in favor of DCs and effective immunity. J Clin Invest 2004, 113, 664-667.Google Scholar

  • 25. Kim P., Armstrong T., Song H., Wolpoe M., Weiss V., Manning E., Huang L., Murata S., Sgouros G., Emens L., Reilly R., Jaffe E.: Antibody association with HER-2/neu-targeted vaccine enhances CD8+ T cell responses in mice through Fc-mediated activation of DCs. J Clin Invest 2008, 188, 1700-1711.Google Scholar

  • 26. Kim R., Emi M., Tanabe K.: Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology 2006, 119, 254-264.Google Scholar

  • 27. Kumar V., Patel S., Tcyganov E., Gabrilovich D.I.: The nature of myeloid derived suppressor cells in the tumor microenvironment. Trends Immunol 2016, 37, 208-220.CrossrefGoogle Scholar

  • 28. Lewkowicz P., Lewkowicz N., Tchórzewski H.: CD4+CD25+ T regulatory cells in pathophysiology and therapy of immunological disorders. Postępy Hig Med Dośw 2005, 59, 371-376.Google Scholar

  • 29. Lopez J., Tait S.W.G.: Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 2015, 112, 957-962.Google Scholar

  • 30. Luczyński W., Krawczuk-Rybak M., Stasiak-Barmuta A.: Myeloid-derived suppressor cells - the new mechanism of immunosuppression in cancer. Postępy Hig Med Dośw 2008, 21, 18-22.Google Scholar

  • 31. Luke J.L., Ott P.A.: PD-1 pathway inhibitors: The next generation of immunotherapy for advanced melanoma. Oncotarget 2015, 6, 3479-3492.CrossrefGoogle Scholar

  • 32. Maeda H., Shiraishi A.: TGF-beta contributes to the shift toward Th-2 type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 1996, 156, 73-78.Google Scholar

  • 33. Mougiakakos D.: Regulatory T cells in colorectal cancer: from biology to prognostic relevance. Cancers 2011, 3, 1708-1731.CrossrefGoogle Scholar

  • 34. Nishikawa H., Sakaguchi S.: Regulatory T cells in tumor immunity. Int J Cancer 2010, 127, 759-767.Google Scholar

  • 35. Oleinika K., Nibbs R.J., Graham G.J., Fraser A.R.: Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 2013, 171, 36-45.Google Scholar

  • 36. Pinheiro D., Singh Y., Grant Ch.R., Appleton R.C., Sacchini F., Walker K.L.R., Chadbourne A.H., Palmer Ch.A., Armitage- Chan E., Thompson I., Williamson L., Cunningham F., Garden O.A.: Phenotypic and functional characterization of a CD4+CD25high FOXP3high regulatory T-cell population in the dog. Immunology 2010, 132, 111-122.Google Scholar

  • 37. Poggi A., Massaro A.M., Negrini S., Contini P., Zocchi M.R.: Tumor-induced apoptosis of human IL-2-activated NK cells: role of natural cytotoxicity receptors. J Immunol 2005, 174, 2653-2660.Google Scholar

  • 38. Poggi A., Zocchi M.R.: Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp 2006, 54, 323-333.CrossrefGoogle Scholar

  • 39. Ryba M., Myśliwska J.: CD4+CD25+Foxp3+ T lymphocytes: naturally occurring T regulatory lymphocytes. Pediatr Endocrinol Diabetes Metab 2010, 16, 289-294.Google Scholar

  • 40. Sato E., Olson S.H., Ahn J., Bundy B., Nishikawa H., Qian F., Jungbluth A.A., Frosina D., Gnjatic S., Ambrosone C., Kepner J., Odunsi T., Ritter G., Lele S., Chen Y.T., Ohtani H., Old L.J., Odunsi K.: Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005, 102, 18538-18543.Google Scholar

  • 41. Sayers T.J.: Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 2011, 60, 1173-1180.CrossrefGoogle Scholar

  • 42. Schreiber H., Wu T.H., Nachman J., Kast W.M.: Immunodominance and tumor escape. Semin Cancer Biol 2002, 12, 25-31.CrossrefGoogle Scholar

  • 43. Schreiber R.D., Old L.J., Smyth M.J.: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565-1570.Google Scholar

  • 44. Shevach E.M., Stephens G.L.: The GITR-GITRL interaction: costimulation or contrasuppression of regulatory activity? Nature Rev Immunol 2006, 6, 613-618.CrossrefGoogle Scholar

  • 45. Sica A., Schioppa T., Mantovani A., Allavena P.: Tumourassociated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 2006, 42, 717-727.CrossrefGoogle Scholar

  • 46. Staveley-O’Carroll K., Sotomayor E., Montgomery J., Borello I., Hwang L., Fein S., Pardoll D., Levitsky H.: Induction of antigenspecific T cell anergy: an early event in the course of tumour progression. Proc Natl Acad Sci USA 1998, 95, 1179-1183.Google Scholar

  • 47. Tiemessen M.M., Jagger A.L., Evans H.G., van Herwijnen M.J., John S., Taams L.S.:CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 2007, 104, 19446-19451.Google Scholar

  • 48. Upadhyay R., Hammerich L., Peng P., Brown B., Merad M., Brody J.D.: Lymphoma: immune evasion strategies. Cancers 2015, 7, 736-762.CrossrefGoogle Scholar

  • 49. Wesołowski R., Markovitz J., Carson W.E.: Myeloid derived suppressor cells-a new therapeutic target in the treatment of cancer. J Immunother Cancer 2013, 1, 10 http://www.immunotherapyofcancer.org/content/1/1/10.Google Scholar

  • 50. Wolchok J.D., Chan T.A.: Cancer: Antitumour immunity gets a boost. Nature 2014, 515, 496-498.Google Scholar

  • 51. Woo S.R., Turnis M.E., Goldberg M.V., Bankoti J., Selby M., Nirschl C.L., Bettini M.L., Gravano D.M., Vogel P., Liu C.L., Tangsombatvisit S., Grosso J.F., Netto G., Smeltzer M.P., Chaux A., Utz P.J., Workman C.J., Pardoll D. M., Korman A.J., Drake C. G., Vignali D.A.A.: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012, 72, 917.Google Scholar

  • 52. Xiao-Feng Qin F.: Dynamic behavior and function of Foxp3 regulatory T cells in tumor bearing host. Cell Mol Immunol 2009, 6, 3-13.Google Scholar

  • 53. Yang Y.: Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015, 125, 3335-3337.Google Scholar

  • 54. Yang Z.Z., Ansell S.M.: The role of Treg cells in the cancer immunological response. Am J Immunol 2009, 5, 17-28.Google Scholar

  • 55. Yuan A., Hsiao Y.J., Chen H.J., Chen H.W., Ho Ch. Ch., Chen Y.Y., Liu Y.Ch., Hong T.H., Yu S.L., Chen J.J.W., Yang P.Ch.: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep 2015, 5, 1-12. Google Scholar

About the article

Received: 2016-04-13

Accepted: 2016-11-07

Published Online: 2016-12-17

Published in Print: 2016-12-01

Citation Information: Journal of Veterinary Research, Volume 60, Issue 4, Pages 453–460, ISSN (Online) 2450-8608, DOI: https://doi.org/10.1515/jvetres-2016-0068.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in