Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

4 Issues per year

IMPACT FACTOR Bull Vet Inst Pulawy 2016: 0.462

CiteScore 2016: 0.46

SCImago Journal Rank (SJR) 2015: 0.230
Source Normalized Impact per Paper (SNIP) 2015: 0.383

Open Access
See all formats and pricing
More options …

Prevalence of C. botulinum and C. perfringens spores in food products available on Polish market

Tomasz Grenda
  • Corresponding author
  • Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Pulawy, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Grabczak
  • Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Pulawy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Kwiatek
  • Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, 24-100 Pulawy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Bober
  • Department of Honey Bee Diseases National Veterinary Research Institute, 24-100 Pulawy, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-19 | DOI: https://doi.org/10.1515/jvetres-2017-0038


Introduction: The aim of this study was to evaluate the prevalence of Clostridium botulinum and Clostridium perfringens in food samples purchased from Polish producers. Material and Methods: The analyses were performed on 260 food samples collected in Lublin and Subcarpathian regions: 56 of smoked meat, 21 of pork meat, 20 of dairy products, 26 of vegetable and fruit preserves, 40 of ready-to-eat meals, 27 of fish preserves, and 70 of honey collected directly from apiaries. Results: C. botulinum strains were isolated from 2.3% (6/260) of samples and the isolates were classified as toxin types A (4/260) and B (2/260). C. perfringens strains were isolated from 14% (37/260) of samples. All the isolates were classified as toxin type A, 28 of them were able also to produce α toxin and 9 - β2 toxin. Conclusion: On the basis of the obtained results it could be suggested that risk assessment, especially regarding the entire honey harvesting process, should be provided in order to ensure the microbiological safety of the products to be consumed by infants and people with a weakened immune system.

Keywords: food; Clostridium botulinum; Clostridium perfringens; Poland


  • 1. Austin J.W.: Clostridium botulinum. In: Food microbiology: Fundamentals and frontiers. Edited by Beuchat L.R., Doyle M.P., Montville T.J. ASM Press, Washington, 2001, pp. 329-349.Google Scholar

  • 2. Baums C.G., Schotte U., Amtsberg G., Goethe R.: Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet Microbiol 2004, 100, 11-16.PubMedGoogle Scholar

  • 3. Carter A.C., Peck M.W.: Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res Microbiol 2015, 166, 303-317.Google Scholar

  • 4. Cherington M.: Clinical spectrum of botulism. Muscle Nerve 1998, 21, 701-710.CrossrefGoogle Scholar

  • 5. De Medici D., Anniballi F., Wyatt G. M., Lindström M., Messelhäußer U., Aldus C.F., Delibato E., Korkeala H., Peck M.W., Fenicia L.: Multiplex PCR for detection of botulinum neurotoxin-producing Clostridia in clinical, food, and environmental samples. Appl Environ Microbiol 2009, 20, 6457-6461.CrossrefWeb of ScienceGoogle Scholar

  • 6. Dover N., Barash J.R., Hill K.K., Xie G., Arnon S.S.: Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 2014, 209, 192-202.Web of ScienceGoogle Scholar

  • 7. Grass J.E., Gould L.H., Mahon B.E.: Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010. Foodborne Pathog Dis 2013, 10, 131-136.Google Scholar

  • 8. Grenda T., Kukier E., Sieradzki Z., Goldsztejn M., Kwiatek K.: Molecular diversity of Clostridium botulinum and phenotypically similar strains. Pol J Vet Sci 2016, 4, 831-840.Google Scholar

  • 9. Hatheway, C.L.: Toxigenic Clostridia. Clin Microbiol Rev 1990, 3, 66-98. CrossrefGoogle Scholar

  • 10. Hatheway, C.L.: Botulism: the present status of the disease. Curr Top Microbiol 1995, 195, 55-75.Google Scholar

  • 11. Kizerwetter-Świda M., Binek M.: Clostridium botulinum toxicosis - still a serious problem. Post Mikrobiol 2009, 40, 2, 75-85.Google Scholar

  • 12. Küplülü Ö., Göncüoğlü M., Özdemir H., Koluman A.: Incidence of Clostridium botulinum spores in honey in Turkey. Food Control 2006, 17, 222-224.CrossrefGoogle Scholar

  • 13. Lindström M., Jankola H.M., Hyytia E.K., Korkeala H.J.: Identification of Clostridium botulinum with API 20 A, Rapid ID 32 A and RapID ANA II. FEMS Immunol Med Microbiol 1999, 24, 267-274.Google Scholar

  • 14. Lindström M., Korkeala H.: Laboratory diagnostics of botulism. Clin Microbiol Rev 2006, 19, 298-314.CrossrefGoogle Scholar

  • 15. Midura T.F.: Update: infant botulism. Clin Microbiol Rev 1996, 9, 119-125.Google Scholar

  • 16. Mustafina R., Maikanov B., Wiśniewski J., Tracz M., Anusz K., Grenda T., Kukier E., Goldsztejn M., Kwiatek K.: Contamination of honey produced in the Republic of Kazakhstan with Clostridium botulinum. Bull Vet Inst Pulawy 2015, 59, 241-246.Google Scholar

  • 17. Nakano H., Okabe T., Hashimoto H., Sakaguchi G.: Incidence of Clostridium botulinum in honey of various origins, Jpn J Med Sci Biol 1990, 43, 183-195.CrossrefGoogle Scholar

  • 18. Nakano H., Sakaguchi G.: An unusually heavy contamination of honey products by Clostridium botulinum type F and Bacillus alvei. FEMS Microbiol Lett 1991, 63, 171-177.CrossrefGoogle Scholar

  • 19. Nevas M.: Clostridium botulinum in honey production with respect to infant botulism. Academic dissertation. Faculty of Veterinary Medicine. University of Helsinki, Helsinki 2006.Google Scholar

  • 20. Nevas M., Lindström M., Hautamäki K., Puoskari S., Korkeala H.: Prevalence and diversity of Clostridium botulinum types A, B, E and F in honey produced in the Nordic countries. Int J Food Microbiol 2005, 105, 145-151.Google Scholar

  • 21. Polish Standard: Animal feeding stuffs - Requirements and microbiological examinations. PN - R - 64791:1994.Google Scholar

  • 22. Raphael B.H., Andreadis J.D.: Real-time PCR detection of the nontoxic non-hemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A-G) gene complex. J Microbiol Meth 2007, 71, 343-346.Google Scholar

  • 23. Samul D., Worsztynowicz P., Leja K., Grajek W.: Beneficial and harmful roles of bacteria from the Clostridium genus. Acta Biochim Pol 2013, 60, 515-521.Google Scholar

  • 24. Sharma S.K., Whiting R.C.: Methods for detection of Clostridium botulinum toxin in foods. J Food Prot 2005, 68, 1256-1263. Google Scholar

  • 25. Tomassetti F., Milito M., Dell’Aira E., De Santis L., Migliore G., Formato G.: Microbiological comparison between honey in jar and honey in comb for human. Ital J Food Saf 2009, 3, 65-66.Google Scholar

About the article

Received: 2017-04-03

Accepted: 2017-08-25

Published Online: 2017-09-19

Published in Print: 2017-09-26

Citation Information: Journal of Veterinary Research, Volume 61, Issue 3, Pages 287–291, ISSN (Online) 2450-8608, DOI: https://doi.org/10.1515/jvetres-2017-0038.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in