Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Kairos. Journal of Philosophy & Science

3 Issues per year

Open Access
See all formats and pricing
More options …

How and why actions are selected: action selection and the dark room problem

Elmarie Venter
Published Online: 2016-04-30 | DOI: https://doi.org/10.1515/kjps-2016-0002


In this paper, I examine an evolutionary approach to the action selection problem and illustrate how it helps raise an objection to the predictive processing account. Clark examines the predictive processing account as a theory of brain function that aims to unify perception, action, and cognition, but - despite this aim - fails to consider action selection overtly. He off ers an account of action control with the implication that minimizing prediction error is an imperative of living organisms because, according to the predictive processing account, action is employed to fulfill expectations and reduce prediction error. One way in which this can be achieved is by seeking out the least stimulating environment and staying there (Friston et al. 2012: 2). Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation. But, most living organisms do not find, and stay in, surprise free environments. This paper explores this objection, also called the “dark room problem”, and examines Clark’s response to the problem. Finally, I recommend that if supplemented with an account of action selection, Clark’s account will avoid the dark room problem.


  • Arias-Carrión, Ó. & Pöppel, E. 2007. Dopamine, learning, and reward-seeking behavior. Acta neurobiologiae experimentalis, 67 (4): 481-488.Google Scholar

  • Barron, A. B. Søvik, E. & Cornish, J. L. 2010. The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Frontiers in behavioral neuroscience, 4 (163).Google Scholar

  • Basso, M. A., & Wurtz, R. H. 1997. Modulation of neuronal activity by target uncertainty. Nature, 389 (6646), 66-69.Google Scholar

  • Biederman, I. 1987. Recognition-by-components: a theory of human image understanding. Psychological review, 94 (2), 115.CrossrefGoogle Scholar

  • Brown, H., Friston, K. & Bestmann, S. 2011. Active inference, attention, and motor preparation. Frontiers in psychology, 2 (218).CrossrefWeb of ScienceGoogle Scholar

  • Chapman, P. 1982. The Origins of Troglobites. Proceedings of the University of Bristol Spelaeological Society 16 (2): 133–141.Google Scholar

  • Clark, A. 2012. Dreaming the Whole Cat: Generative Models, Predictive Processing, and the Enactivist Conception of Perceptual Experience. Mind, 121 (483): 753-771.Web of ScienceGoogle Scholar

  • Clark, A. 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36 (3), 181-204.Web of ScienceCrossrefGoogle Scholar

  • Clark, A. 2014. Perceiving as Predicting. In Mohan, M., Biggs, S., & Stokes, D. (eds.). Perception and Its Modalities. New York: Oxford University Press.Google Scholar

  • Dickinson, A. & Balleine, B. 2002. The role of learning in the operation of motivational systems. In C. R. Gallistel. (ed). Steven’s handbook of experimental psychology: Learning, motivation and emotion. Volume 3. 3rd edition. New York: John Wiley & Sons.Google Scholar

  • Eliasmith, C. 2007. How to build a brain: From function to implementation. Synthese, 159 (3): 373-388.Web of ScienceGoogle Scholar

  • Friston, K. 2003. Learning and inference in the brain. Neural Networks, 16 (9): 1325-1352.CrossrefGoogle Scholar

  • Friston, K.J., Daunizeau, J., & Kiebal, S.J., 2009 Reinforcement Learning or Active Inference? PLoS ONE 4 (7): e6421: 1-13.Google Scholar

  • Friston, K. 2011. Embodied inference: Or I think therefore I am, if I am what I think. In Tschacher, W. & Bergomi, C. (eds.). The implications of embodiment: Cognition and communication. Exeter: Imprint Academic.Google Scholar

  • Friston, K. & Stephan, K. E. 2007. Free-energy and the brain. Synthese, 159 (3): 417-458.Web of ScienceGoogle Scholar

  • Friston, K., Thornton, C. & Clark, A. 2012. Free-energy minimization and the dark-room problem. Frontiers in psychology 3 (130): 1-7.CrossrefWeb of ScienceGoogle Scholar

  • Glimcher, P. W. 2011. Foundations of neuroeconomic analysis. New York: Oxford University Press.Google Scholar

  • Glimcher, P. W. & Sparks, D. L. 1992. Movement selection in advance of action in the superior colliculus. Nature, 355 (6360): 542-545.Google Scholar

  • Godfrey-Smith, P. 2002. Environmental complexity and the evolution of cognition. In Sternberg, R. & Kaufman, J. (eds.). The evolution of intelligence. Mahwah: Laurence Erlbaum Associates.Google Scholar

  • Hohwy, J. 2010. The hypothesis testing brain: Some philosophical applications. In Christensen W., Schier, E. & Sutton, J. (eds.). ASCS09: Proceedings of the 9th Conference of the Australasian Society for Cognitive Science. Sydney: Macquarie Centre for Cognitive Science.Google Scholar

  • Hohwy, J., Roepstorff, A. & Friston, K. 2008. Predictive coding explains binocular rivalry: an epistemological review. Cognition, 108 (3): 687-701.Web of ScienceCrossrefGoogle Scholar

  • Houston, A. I., McNamara, J. M. & Steer, M. D. 2007. Do we expect natural selection to produce rational behaviour? Philosophical Transactions of the Royal Society B: Biological Sciences, 362 (1485): 1531-1543.Web of ScienceGoogle Scholar

  • Hubel, D. H. & Wiesel, T. N. 1965. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of neurophysiology, 28 (2): 229-289.Google Scholar

  • Huebner, B. 2012. Surprisal and valuation in the predictive brain. Frontiers in psychology, 3 (415).CrossrefWeb of ScienceGoogle Scholar

  • Kable, J. W. & Glimcher, P. W. 2007. The neural correlates of subjective value during intertemporal choice. Nature neuroscience, 10 (12): 1625-1633.CrossrefWeb of ScienceGoogle Scholar

  • Knill, D. C. & Pouget, A. 2004. The Bayesian brain: the role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27 (12): 712-719.CrossrefGoogle Scholar

  • Lorenz, E. N. 1982. Atmospheric predictability experiments with a large numerical model. Tellus, 34(6): 505-513.CrossrefGoogle Scholar

  • Maes, P. 1990. Situated agents can have goals. Robotics and autonomous systems, 6(1): 49-70.Google Scholar

  • McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. 2004. Separate neural systems value immediate and delayed monetary rewards. Science, 306 (5695): 503-507.Google Scholar

  • Platt, M. L. & Glimcher, P. W. 1999. Neural correlates of decision variables in parietal cortex. Nature, 400(6741): 233-238.Google Scholar

  • Rauss, K., Schwartz, S. & Pourtois, G. 2011. Top-down effects on early visual processing in humans: a predictive coding framework. Neuroscience & Biobehavioral Reviews, 35(5): 1237-1253.Web of ScienceGoogle Scholar

  • Riesenhuber, M. & Poggio, T. 2000. Models of object recognition. Nature neuroscience, 3: 1199-1204.CrossrefGoogle Scholar

  • Schall, J. D. & Hanes, D. P. 1993. Neural basis of saccade target selection in frontal eye field during visual search. Nature, 366 (6454): 467-469.Google Scholar

  • Schultz, W. 1998. Predictive reward signal of dopamine neurons. Journal of neurophysiology, 80 (1): 1-27.Google Scholar

  • Shea, N. 2012. Reward Prediction Error Signals are Meta-Representational. Noûs, 48 (2): 314-341.CrossrefGoogle Scholar

  • Sherrington, C. S. 1906. The Integrative Action of the Nervous System. Connecticut: Yale University Press.Google Scholar

  • Spurrett, D. 2012. What is to be Done? Why Reward is Difficult to Do Without. Frontiers in psychology, 3: 412.Web of ScienceGoogle Scholar

  • Sterelny, K. 2003. Thought in a hostile world: The evolution of human cognition. Oxford: Blackwell Publishing Ltd.Google Scholar

  • Tinbergen, N. 1951. The study of instinct. Michigan: Clarendon Press.Google Scholar

About the article

Published Online: 2016-04-30

Published in Print: 2016-04-01

Citation Information: Kairos. Journal of Philosophy & Science, Volume 15, Issue 1, Pages 19–45, ISSN (Online) 1647-659X, DOI: https://doi.org/10.1515/kjps-2016-0002.

Export Citation

© 2016 Elmarie Venter, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in