Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Kairos. Journal of Philosophy & Science

3 Issues per year

Open Access
See all formats and pricing
More options …

Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers

Lior Rabi
Published Online: 2016-04-30 | DOI: https://doi.org/10.1515/kjps-2016-0003


Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated a response to it. In his writings he referred many times to the advancements in modern mathematics and argued that mathematics should be based on the intuition of counting. In response to Cantor’s mathematics Ortega presented what he defined as an ‘absolute positivism’. In this theory he did not mean to naturalize cognition or to follow the guidelines of the Comte’s positivism, on the contrary. His aim was to present an alternative to Cantor’s mathematics by claiming that mathematicians are allowed to deal only with objects that are immediately present and observable to intuition. Ortega argued that the infinite set cannot be present to the intuition and therefore there is no use to differentiate between cardinals of different infinite sets.

Keywords: Ortega y Gasset; Georg Cantor; Galileo; infinite set; intuitionism


  • Beck, M. and Geoghegan, R., 2011, The Art of Proof. Basic Training for Deeper Mathematics, New York, Springer.Google Scholar

  • Cantor, G., 2015, “Contributions to the Founding of the Theory of Transfinite Numbers, in Contributions to the Founding of the Theory of Transfinite Numbers. Translated by Philip E.B. Jourdain, Dover Publications, New York.Google Scholar

  • Dauben, J.W., 1989, Georg Cantor: His Mathematics and Philosophy of the Infinite, Princeton University Press, New Jersey.Google Scholar

  • Einstein, A., 2007, ‘Geometry and Experience’, An expanded form of Address to the Prussian Academy of Sciences in Berlin of January 27th, 1921. In: The Essential Einstein. His Greatest Works. Edited, with commentary by Stephen Hawking, (Penguin Books)Google Scholar

  • Harold, E., 1988, Kronecker’s Place in History. In: “History and Philosophy of Modern Mathematics”, W. Aspray and P. Kitcher, eds., Minnesota Studies in the Philosophy of Science, vol. 11, Univ. of Minn. Press.Google Scholar

  • Gillies, D.A., 1980, “Brouwer’s Philosophy of Mathematics. Review Article”. In: “Erkenntnis 15, 105-126.Google Scholar

  • Gillman, L., 2012, “Two Classical Surprises Concerning the Axiom of Choice and the Continuum Hypothesis”, In: The Mathematical Association of America (Monthly 109).Google Scholar

  • Jech, T., 2006. Set Theory, The Third Millennium Edition, Revised and Expended, Berlin Springer.Google Scholar

  • Morón, A., 1968, El sistema de Ortega y Gasset, Madrid, Ediciones Alcalá.Google Scholar

  • Natorp, P., 1912, Kant und die Marburger Schule, in Kant Studien 17 (1-3): 193-221, Wurzburg, Kabitsch.Google Scholar

  • Ortega y Gasset, J., 1983, En torno a Galileo (1933), Obras completas. Tomo V, Alianza Editorial, Madrid.Google Scholar

  • Ortega y Gasset 1987, Cartas de un joven español, Madrid, El Arquero.Google Scholar

  • Ortega y Gasset 1992a, La idea de principio en Leibniz y la evolución de la teoría deductiva, Alianza Editorial, Madrid.Google Scholar

  • Ortega y Gasset 1992b, La idea de principio en Leibniz y la evolución de la teoría deductiva, Alianza Editorial, Madrid.Google Scholar

  • Ortega y Gasset 1995, Qué es filosofía? (Introducción: Ignacio Sánchez Cámara), Editorial Espasa Calpe, Madrid (1929).Google Scholar

  • Ortega y Gasset 2004, “Vicistudes en las ciencies” (1930), in Meditacion de la tecnica y otros ensyaos sobre ciencia y filosofía, Alianza Editorial, Madrid.Google Scholar

  • Reichenbach, H., The Philosophy of Space and Time. Translated by Maria Reichenbach and John Freund with Introduction and remarks by Rudolf Carnap, New York, 2014.Google Scholar

  • Russell, B., 1917, “Mathematics and the Metaphysicians”, In: Mysticism and Logic, London, George Allen.Google Scholar

  • Russell, B. 2009, “Mathematics and Logic” in The Basic Writings of Bertrand Russell, London, New York, Routledge.Google Scholar

  • Russell, B. 2010, Introduction to Mathematical Philosophy, London, George Allen & Unwin.Google Scholar

  • Sánchez, C., 1995, Introducción a Qué es filosofía (in Qué es filosofía) Espasa Calpe, Madrid.Google Scholar

  • San Martín, J,. 1994, Ensayos sobre Ortega, Universidad Nacional de Educación a Distancia, Madrid.Google Scholar

  • Thiele, R., 2005, “Georg Cantor (1845-1918)”, In: Mathematics and the Divine, Amsterdam, Elsevier, pp. 525-547.Google Scholar

  • Trudeau, R.J., 1993, Introduction to Graph Theory, New York. Dover Publications.Google Scholar

  • Winskel, G., 2010, Set Theory for Computer Science, https://www.cl.cam.ac.uk/~gw104/STfCS2010.pdf. (Accessed 6 February 2016).

  • Zamora Bonilla, J., 2005, El impulse orteguiano a la ciencia espanola, Editorial Biblioteca Nueva, Madrid.Google Scholar

About the article

Published Online: 2016-04-30

Published in Print: 2016-04-01

Citation Information: Kairos. Journal of Philosophy & Science, Volume 15, Issue 1, Pages 46–70, ISSN (Online) 1647-659X, DOI: https://doi.org/10.1515/kjps-2016-0003.

Export Citation

© 2016 Lior Rabi, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in