Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Kairos. Journal of Philosophy & Science

3 Issues per year

Open Access
See all formats and pricing
More options …

A Física da Terminação

José Félix Costa
  • Departamento de Matemática do Instituto Superior Técnico Centro de Filosofia das Ciências (CFCUL) Universidade de Lisboa,Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-08 | DOI: https://doi.org/10.1515/kjps-2016-0007


Mostramos que, em virtude dos limites teóricos da computação, nem toda a ciência formulada com carácter preditivo pode ser simulada. Em particular, evidencia- se que a Fisica Clássica, nomeadamente a Físíca Newtoniana, padece deste mal, encerrando processos de Zenão.


  • Andréka, H., Nemeti , I., & Nemeti, P. (2009). General relativistic hypercomputing and foundation of mathematics. Natural Computing, 8(3), 499-516.Google Scholar

  • Copeland, J. B. (1998). Even Turing machines can compute uncomputable functions. In C. Calude, Casti, John, & Dinneen, M. J. (Ed.), Unconventional Models of Computation, Lecture Notes in Computer Science (pp. 150-164). Springer.Google Scholar

  • Copeland, J. B. (1998). Super-Turing machines. Complexity, 4, 30-32.CrossrefGoogle Scholar

  • Costa, J. (2012). Turing machines as clocks, rulers and randomizers. Boletim da Sociedade Portuguesa de Matematica(67), 121-153.Google Scholar

  • Davis, M. (2000). The Universal Computer, The Road from Leibniz to Turing. W. W. Norton and Company.Google Scholar

  • Fritz, W. B. (1996). The women of ENIAC. IEEE Annals of the History of Computing, 18(3), 13-28.CrossrefGoogle Scholar

  • Geroch, R., & Hartle, James B. (1986). Computability and physical theories. Foundations of Physics, 16(6), 533-550.CrossrefGoogle Scholar

  • Gerver, J. (1991). The existence of pseudo-collisions in the plane. Journal of Differential Equations(89), pp. 1-68.Google Scholar

  • Hogarth, M. (2004). Deciding Arithmetic Using SAD Computers. British Journal for the Philosophy of Science, 55(4), 681-691.Google Scholar

  • Penrose, R. (1989). The Emperor’s New Mind. Oxford University Press.Google Scholar

  • Shagrir, O. (2012). Supertasks do not increase computational power. Natural Computing, 11(1), 51-58.Google Scholar

  • Shannon, C. E. (1956). A universal Turing machine with two internal states. (C. E. Shannon, & J. McCarthy, Edits.) Annals of Mathematical Studies, 34, pp. 157-165.Google Scholar

  • Smith, W. (2006). Church’s thesis meets the N-body problem. Applied Mathematics and Computation, 178(1), 154-183.Google Scholar

  • Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230-265.Google Scholar

  • Turing, A. (1937). On computable numbers. Proceedings of the London Mathematical Society, 43, 544-546.Google Scholar

  • Turing, A., & Girard, J.-Y. (1991). La Machine de Turing. Sources du Savoir, Seuil.Google Scholar

  • Xia, Z. (1992). The existence of noncollision singularities in Newtonian systems. The Annals of Mathematics, Second Series, 135(3), 411-468.Google Scholar

About the article

Published Online: 2016-11-08

Published in Print: 2016-10-01

Citation Information: Kairos. Journal of Philosophy & Science, Volume 16, Issue 1, Pages 14–60, ISSN (Online) 1647-659X, DOI: https://doi.org/10.1515/kjps-2016-0007.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in