Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 1, 2005

Thrombozytenaktivität und Thrombozyten-Leukozyten-Konjugate als Marker in der Sportmedizin Platelet activity and platelet-leukocyte conjugate formation as markers in sports medicine

  • Thomas Hilberg
From the journal LaboratoriumsMedizin

Zusammenfassung

Thrombozyten haben eine zentrale Bedeutung bei der Arteriosklerose und auch bei akuten thrombotischen Ereignissen. Körperliche Aktivität besitzt ein hohes Potential zur Vermeidung von Gefäßerkrankungen, dagegen wird intensiven Belastungen ein mögliches Risikopotential bei der Auslösung kardiovaskulärer Ereignisse zugeschrieben. Bei den notwendigen Untersuchungen thrombozytärer Funktionszustände nach körperlicher Belastung und Training werden zunehmend flowzytometrische Methoden eingesetzt, weil diese Technik die Möglichkeit impliziert, Veränderungen direkt auf der Oberfläche von Thrombozyten zu verifizieren. Da diese Veränderungen nach körperlichen Belastungen recht moderat ausfallen, sind Verfahren mit hoher Sensitivität notwendig. Zur Untersuchung dieser Veränderungen wurden vier Assays aufgebaut: a) Spontanexpression von Aktivierungsantigenen, b) Stimulationsassay, c) Thrombozyten-Leukozyten-Konjugate spontan und d) stimuliert.

In einigen Untersuchungen konnte eine erhöhte CD62P- und PAC-1-Expression auf der Oberfläche von Thrombozyten nach körperlicher Belastung bei Gesunden nachgewiesen werden. Während die Untersuchungen der CD62P-Expression auf unstimulierten Thrombozyten nach körperlicher Belastung bei geringen Veränderungen uneinheitliche Resultate zeigen können, führen körperliche Belastungen im Stimulationsversuch regelhaft zu einer erhöhten Thrombozytenreaktivität. Obwohl der Bildung von Thrombozyten-Leukozyten-Konjugaten zunehmende analytische Bedeutung zukommt, wurden belastungsinduzierte Veränderungen der Konjugate bisher kaum untersucht. In den wenigen vorliegenden Studien konnte aber gezeigt werden, dass es nach körperlichen Belastungen zu einer Zunahme an Thrombozyten-Leukozyten-Konjugaten sowie auch ihrer Subpopulationen kommt, welche sich aber sehr schnell wieder auflösen.

Die Ergebnisse zeigen, dass ein Stimulationsassay sowie die Bestimmung der Thrombozyten-Leukozyten-Konjugate sensitivere Verfahren darstellen als die Bestimmung von spontanen Aktivitätsmarkern wie z.B. das CD62P.

Zusammenfassend sind die beschriebenen Methoden nicht nur für Untersuchungen von physiologischen Veränderungen bei Thrombozyten einsetzbar, sondern können auch ohne weiteres bei der Untersuchung von pathologischen Zuständen verwendet werden.

Abstract

Platelets are involved in the development of arteriosclerosis as well as in acute thrombotic events. Physical exercise helps to avoid arteriosclerosis, but acute intensive exercise seems to trigger cardiovascular events. Today, flowcytometric methods are more often used for investigations of exercise-induced changes in platelet function because of the possibilities to investigate changes directly on the surface of the platelets. To verify exercise-induced changes in platelet function, it is necessary to use a sensitive method because of the temporarily small changes after exercise. For these investigations, four assays have been developed: a) spontaneous expression of activation markers, b) stimulation assay, c) platelet-leukocyte conjugates spontaneous, and d) stimulated. In some studies, increased levels of CD62P and PAC-1 expression on platelets could be investigated. Although the results of investigations in platelet activity are not in line, exercise leads to a rise in agonist-stimulated platelet reactivity after exercise. During the last years, the investigations of platelet-leukocyte conjugates have become more and more important. However, only few studies have been engaged in investigations of conjugates and exercise. In the majority of these studies it could be demonstrated that exercise is able to increase the number of platelet-leukocyte conjugates as well as the subpopulations, but they are quickly disbanded. These results could demonstrate that a stimulation assay and the determination of platetet-leukocyte-conjugates are more sensitive markers than the investigation of spontaneous activation markers like CD62P alone.

In the present article, methods are described to investigate physiological changes in platelet function e.g., after physical exercise. Nevertheless, these methods can also be used for investigations of pathological situations.

:

Literatur

1. Ruggeri ZM. Platelets in atherothrombosis. Nat Med2002;8:1227–34.10.1038/nm1102-1227Search in Google Scholar PubMed

2. Kullo IJ, Gau GT, Tajik AJ. Novel risk factors for atherosclerosis. Mayo Clin Proc2000;75:369–80.10.4065/75.4.369Search in Google Scholar PubMed

3. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson JE. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med2000;343:1355–61.10.1056/NEJM200011093431902Search in Google Scholar PubMed

4. Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med1993;329:1677–83.10.1056/NEJM199312023292301Search in Google Scholar PubMed

5. Willich SN, Lewis M, Lowel H, Arntz HR, Schubert F, Schroder R. Physical exertion as a trigger of acute myocardial infarction. Triggers and Mechanisms of Myocardial Infarction Study Group. N Engl J Med1993;329:1684–90.10.1056/NEJM199312023292302Search in Google Scholar PubMed

6. Sesso HD, Paffenbarger RS, Jr, Lee IM. Physical activity and coronary heart disease in men: The Harvard Alumni Health Study. Circulation2000;102:975–80.10.1161/01.CIR.102.9.975Search in Google Scholar PubMed

7. Weiss C, Welsch B, Albert M, Friedmann B, Strobel G, Jost J, Nawroth P, et al. Coagulation and thrombomodulin in response to exercise of different type and duration. Med Sci Sports Exerc1998;30:1205–10.10.1097/00005768-199808000-00004Search in Google Scholar PubMed

8. Davis RB, Boyd DG, McKinney ME, Jones CC. Effects of exercise and exercise conditioning on blood platelet function. Med Sci Sports Exerc1990;22:49–53.10.1249/00005768-199002000-00008Search in Google Scholar

9. Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD. Effect of strenuous exercise on platelet activation state and reactivity. Circulation1993;88:1502–11.10.1161/01.CIR.88.4.1502Search in Google Scholar PubMed

10. Schmitz G, Rothe G, Ruf A, Barlage S, Tschope D, Clemetson KJ, et al. European Working Group on Clinical Cell Analysis: Consensus protocol for the flow cytometric characterisation of platelet function. Thromb Haemost1998;79:885–96.10.1055/s-0037-1615088Search in Google Scholar

11. Linden MD, Frelinger AL, 3rd, Barnard MR, Przyklenk K, Furman MI, Michelson AD. Application of flow cytometry to platelet disorders. Semin Thromb Hemost2004;30:501–11.10.1055/s-2004-835671Search in Google Scholar PubMed

12. Schmidt V, Hilberg T, Franke G, Glaser D, Gabriel HH. Paraformaldehyde fixation induces a systematic activation of platelets. Platelets2003;14:287–94.10.1080/0953710031000154722Search in Google Scholar PubMed

13. Cahill MR, Macey MG, Newland AC. Fixation with formaldehyde induces expression of activation dependent platelet membrane glycoproteins, P selectin (CD62) and GP53 (CD63). Br J Haematol1993;84:527–9.10.1111/j.1365-2141.1993.tb03112.xSearch in Google Scholar PubMed

14. Michelson AD. Flow cytometry: a clinical test of platelet function. Blood1996;87:4925–36.10.1182/blood.V87.12.4925.bloodjournal87124925Search in Google Scholar

15. Michelson AD, Barnard MR, Krueger LA, Frelinger AL, 3rd, Furman MI. Evaluation of platelet function by flow cytometry. Methods2000;21:259–70.10.1006/meth.2000.1006Search in Google Scholar PubMed

16. Mockel M, Ulrich NV, Heller G, Jr., Rocker L, Hansen R, Riess H, et al. Platelet activation through triathlon competition in ultra-endurance trained athletes: impact of thrombin and plasmin generation and catecholamine release. Int J Sports Med2001;22:337–43.10.1055/s-2001-15649Search in Google Scholar PubMed

17. Giesberts AN, van Willigen G, Lapetina EG, Akkerman JW. Regulation of platelet glycoprotein IIb/IIIa (integrin alpha IIB beta 3) function via the thrombin receptor. Biochem J1995;309:613–20.10.1042/bj3090613Search in Google Scholar PubMed PubMed Central

18. Michelson AD, Ellis PA, Barnard MR, Matic GB, Viles AF, Kestin AS. Downregulation of the platelet surface glycoprotein Ib-IX complex in whole blood stimulated by thrombin, adenosine diphosphate, or an in vivo wound. Blood1991;77:770–9.10.1182/blood.V77.4.770.770Search in Google Scholar

19. Holmsen H. Significance of testing platelet functions in vitro. Eur J Clin Invest1994;24(Suppl 1):3–8.10.1111/j.1365-2362.1994.tb02418.xSearch in Google Scholar PubMed

20. Hou M, Stockelberg D, Kutti J, Wadenvik H. Glycoprotein IIb/IIIa autoantigenic repertoire in chronic idiopathic thrombocytopenic purpura. Br J Haematol1995;91:971–5.10.1111/j.1365-2141.1995.tb05421.xSearch in Google Scholar PubMed

21. Koksch M, Rothe G, Kiefel V, Schmitz G. Fluorescence resonance energy transfer as a new method for the epitope-specific characterization of anti-platelet antibodies. J Immunol Methods1995;187:53–67.10.1016/0022-1759(95)00166-8Search in Google Scholar

22. Chong BH, Du XP, Berndt MC, Horn S, Chesterman CN. Characterization of the binding domains on platelet glycoproteins Ib-IX and IIb/IIIa complexes for the quinine/quinidine-dependent antibodies. Blood1991;77:2190–9.10.1182/blood.V77.10.2190.2190Search in Google Scholar

23. Ruan CG, Du XP, Xi XD, Castaldi PA, Berndt MC. A murine antiglycoprotein Ib complex monoclonal antibody, SZ 2, inhibits platelet aggregation induced by both ristocetin and collagen. Blood1987;69:570–7.10.1182/blood.V69.2.570.bloodjournal692570Search in Google Scholar

24. de Bruijne-Admiraal LG, Modderman PW, Von dem Borne AE, Sonnenberg A. P-selectin mediates Ca(2+)-dependent adhesion of activated platelets to many different types of leukocytes: detection by flow cytometry. Blood1992;80:134–42.10.1182/blood.V80.1.134.134Search in Google Scholar

25. Sedlmayr P, Grosshaupt B, Muntean W. Flow cytometric detection of intracellular platelet antigens. Cytometry1996;23:284–9.10.1002/(SICI)1097-0320(19960401)23:4<284::AID-CYTO4>3.0.CO;2-HSearch in Google Scholar

26. Ruf A, Patscheke H. Flow cytometric detection of activated platelets: comparison of determining shape change, fibrinogen binding, and P-selectin expression. Semin Thromb Hemost1995;21:146–51.10.1055/s-2007-1000389Search in Google Scholar

27. Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, et al. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci USA1996;93:11877–82.10.1073/pnas.93.21.11877Search in Google Scholar

28. Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem1985;260:11107–14.10.1016/S0021-9258(17)39154-8Search in Google Scholar

29. Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest1979;64:1393–401.10.1172/JCI109597Search in Google Scholar

30. Bennett JS, Hoxie JA, Leitman SF, Vilaire G, Cines DB. Inhibition of fibrinogen binding to stimulated human platelets by a monoclonal antibody. Proc Natl Acad Sci USA1983;80:2417–21.10.1073/pnas.80.9.2417Search in Google Scholar

31. Metzelaar MJ, Wijngaard PL, Peters PJ, Sixma JJ, Nieuwenhuis HK, Clevers HC. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem1991;266:3239–45.10.1016/S0021-9258(18)49980-2Search in Google Scholar

32. Gerrard JM, Lint D, Sims PJ, Wiedmer T, Fugate RD, McMillan E, et al. Identification of a platelet dense granule membrane protein that is deficient in a patient with the Hermansky-Pudlak syndrome. Blood1991;77:101–12.10.1182/blood.V77.1.101.bloodjournal771101Search in Google Scholar

33. Shalev A, Michaud G, Israels SJ, McNicol A, Singhroy S, McMillan EM, et al. Quantification of a novel dense granule protein (granulophysin) in platelets of patients with dense granule storage pool deficiency. Blood1992;80:1231–7.10.1182/blood.V80.5.1231.1231Search in Google Scholar

34. de Haas M, Kerst JM, van der Schoot CE, Calafat J, Hack CE, Nuijens JH, et al. Granulocyte colony-stimulating factor administration to healthy volunteers: analysis of the immediate activating effects on circulating neutrophils. Blood1994;84:3885–94.10.1182/blood.V84.11.3885.bloodjournal84113885Search in Google Scholar

35. Israels SJ, McMillan-Ward EM. CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb Haemost2005;93:311–8.10.1160/TH04-08-0503Search in Google Scholar

36. Hilberg T, Schmidt V, Losche W, Gabriel HH. Platelet activity and sensitivity to agonists after exhaustive treadmill exercise. J Sports Sci & Med2003;2:15–22.10.1080/09537100310001646941Search in Google Scholar PubMed

37. Mockel M, Ulrich NV, Rocker L, Ruf A, Klefisch F, Patscheke H, et al. Exhaustive cycle exercise induces P-selectin expression, coagulation, and fibrinolysis activation in ultraendurance athletes. Thromb Res1999;94:263–9.10.1016/S0049-3848(99)00008-0Search in Google Scholar

38. Hilberg T, Schmidt V, Glaser D, Schammne D, Losche W, Gabriel HH. Platelet activity, sensitivity to agonist, and platelet--leukocyte conjugate formation after long-term exercise. Platelets2002;13:273–7.10.1080/0953770021000007249Search in Google Scholar PubMed

39. Hilberg T, Glaser D, Schmidt V, Losche W, Franke G, Schneider K, et al. Short-term exercise and platelet activity, sensitivity to agonist, and platelet-leukocyte conjugate formation. Platelets2003;14:67–74.10.1080/0953710021000057541-1Search in Google Scholar

40. Hilberg T, Eichler E, Glaser D, Schmidt V, Gabriel HH. Platelet activity, reactivity and platelet-leukocyte conjugate formation before and after exhaustive or moderate exercise in patients with IDDM. Platelets2004;15:101–8.10.1080/09537100310001646941Search in Google Scholar

41. Evangelista V, Manarini S, Rotondo S, Martelli N, Polischuk R, McGregor JL, et al. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18. Blood1996;88:4183–94.10.1182/blood.V88.11.4183.bloodjournal88114183Search in Google Scholar

42. Neumann FJ, Marx N, Gawaz M, Brand K, Ott I, Rokitta C, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation1997;95:2387–94.10.1161/01.CIR.95.10.2387Search in Google Scholar

43. Bonomini M, Stuard S, Carreno MP, Settefrati N, Santarelli P, Haeffner-Cavaillon N, et al. Neutrophil reactive oxygen species production during hemodialysis: role of activated platelet adhesion to neutrophils through P-selectin. Nephron1997;75:402–11.10.1159/000189577Search in Google Scholar

44. Yeo EL, Sheppard JA, Feuerstein IA. Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model). Blood1994;83:2498–507.10.1182/blood.V83.9.2498.bloodjournal8392498Search in Google Scholar

45. Osterud B. Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul Fibrinolysis1995;6:S20–5.10.1097/00001721-199506001-00004Search in Google Scholar

46. Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest1995;25:843–51.10.1111/j.1365-2362.1995.tb01694.xSearch in Google Scholar

47. Furman MI, Benoit SE, Barnard MR, Valeri CR, Borbone ML, Becker RC, et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol1998;31:352–8.10.1016/S0735-1097(97)00510-XSearch in Google Scholar

48. Mickelson JK, Lakkis NM, Villarreal-Levy G, Hughes BJ, Smith CW. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol1996;28:345–53.10.1016/0735-1097(96)00164-7Search in Google Scholar

49. Gawaz M, Bogner C. Changes in platelet membrane glycoproteins and platelet-leukocyte interaction during hemodialysis. Clin Investig1994;72:424–9.10.1007/BF00180515Search in Google Scholar PubMed

50. Hagberg IA, Lyberg T. Evaluation of circulating platelet-leukocyte conjugates: a sensitive flow cytometric assay well suited for clinical studies. Platelets2000;11:151–60.10.1080/095371000403080Search in Google Scholar PubMed

51. Li N, Hu H, Lindqvist M, Wikstrom-Jonsson E, Goodall AH, Hjemdahl P. Platelet-leukocyte cross talk in whole blood. Arterioscler Thromb Vasc Biol2000;20:2702–8.10.1161/01.ATV.20.12.2702Search in Google Scholar

52. Todd RF, 3rd, Nadler LM, Schlossman SF. Antigens on human monocytes identified by monoclonal antibodies. J Immunol1981;126:1435–42.10.4049/jimmunol.126.4.1435Search in Google Scholar

53. Todd RF, 3rd, Van Agthoven A, Schlossman SF, Terhorst C. Structural analysis of differentiation antigens Mo1 and Mo2 on human monocytes. Hybridoma1982;1:329–37.10.1089/hyb.1.1982.1.329Search in Google Scholar

54. Haziot A, Tsuberi BZ, Goyert SM. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J Immunol1993;150:5556–65.10.4049/jimmunol.150.12.5556Search in Google Scholar

55. Furman MI, Barnard MR, Krueger LA, Fox ML, Shilale EA, Lessard DM, et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol2001;38:1002–6.10.1016/S0735-1097(01)01485-1Search in Google Scholar

56. Hilberg T, Glaser D, Koksch M, Schmidt V, Sossdorf M, Gabriel HH. Differentiation of platelet-leukocyte conjugate formation by short term exercise. Clin Hemorheol Microcirc2004;31:217–26.Search in Google Scholar

57. Perneby C, Wallen NH, Hu H, Li N, Hjemdahl P. Prothrombotic responses to exercise are little influenced by clopidogrel treatment. Thromb Res2004;114:235–43.10.1016/j.thromres.2004.06.004Search in Google Scholar PubMed

58. Wang JS, Liao CH. Moderate-intensity exercise suppresses platelet activation and polymorphonuclear leukocyte interaction with surface-adherent platelets under shear flow in men. Thromb Haemost2004;91:587–94.10.1160/TH03-10-0644Search in Google Scholar PubMed

59. Wang JS. Strenuous, acute exercise suppresses polymorphonuclear leukocyte respiratory burst under adherence to surface-adherent platelets in men. Thromb Haemost2004;92:1076–85.10.1160/TH04-04-0226Search in Google Scholar PubMed

Online erschienen: 2005-10-01
Erschienen im Druck: 2005-10-01

©2004 by Walter de Gruyter Berlin New York

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/JLM.2005.051/html
Scroll to top button