Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Laboratory Medicine

Official Journal of the German Society of Clinical Chemistry and Laboratory Medicine

Editor-in-Chief: Schuff-Werner, Peter

Editorial Board: Ahmad-Nejad, Parviz / Bidlingmaier, Martin / Karsten, Conrad / Fraunberger, Peter / Ghebremedhin, Beniam / Holdenrieder, Stefan / Kiehntopf, Michael / Klein, Hanns-Georg / Klouche, Mariam / Kohse, Klaus P. / Kratzsch, Jürgen / Luppa, Peter B. / März, Winfried / Nebe, Carl Thomas / Orth, Matthias / Sack, Ulrich / Steimer, Werner / Weber, Bernard / Wieland, Eberhard / Zettl, Uwe K.

6 Issues per year


IMPACT FACTOR 2017: 0.216

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.158
Source Normalized Impact per Paper (SNIP) 2017: 0.082

Online
ISSN
2567-9449
See all formats and pricing
More options …
Volume 38, Issue 4

Issues

Der HS-Omega 3 Index®: klinische Wertigkeit standardisierter Fettsäureanalytik

HS-Omega-3 Index: clinical value of standardized fatty acid analysis

Clemens von Schacky
  • Corresponding author
  • Omegametrix, Martinsried, Deutschland
  • Präventive Kardiologie, Medizinische Klinik I, Ludwig Maximilians-Universität München, München, Deutschland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-06 | DOI: https://doi.org/10.1515/labmed-2014-0007

Zusammenfassung

Fettsäuren werden in verschiedensten Kompartimenten gemessen, mit den unterschiedlichsten Ergebnissen. Aufgrund der unterschiedlichen Messverfahren differieren Messergebnisse stark, auch wenn im gleichen Kompartiment gemessen wurde. Deshalb konnten die Ergebnisse wissenschaftlicher Fettsäuremessungen für die klinische Routine nicht verwendet werden, und die Fettsäureanalytik bekam keinen Platz in der klinischen Routine. Der HS-Omega-3 Index ist der Prozentsatz von Eicosapentaensäure (EPA) plus Docosahexaensäure (DHA) in Erythrozyten, gemessen mit einer strikt standardisierten und qualitätsgesicherten analytischen Methode, die weitere 24 Fettsäuren erfasst. Bisher beruhen 143 Publikationen und weitere >50 laufende Forschungsprojekte auf dem HS-Omega-3 Index. Ein niedriger HS-Omega-3 Index ist ein kardiovaskulärer Risikofaktor und assoziiert mit suboptimaler Hirnfunktion, was sich mit neurologischen und psychiatrischen Methoden fassen lässt. In Interventionsstudien auf Basis des HS-Omega-3 Index wurden konsistent zahlreiche Aspekte der genannten Gesundheitsprobleme gebessert, während Interventionsstudien im konventionellen Studiendesign weniger konsistente Ergebnisse zeigten. Der HS-Omega-3 Index zeigt die Relevanz der Fettsäureanalytik für die klinische Routine. In Europa noch nicht, aber in den USA ist der HS-Omega-3 Index Bestandteil der klinischen Routine.

Abstract

Fatty acids are measured in various compartments, with highly variable results. Because analytical methods differ, results differ substantially, even when identical compartments are measured. Therefore, scientific results of fatty acid analyses could not be applied to clinical routine; and fatty acid analysis has no place in clinical routine. The HS-Omega-3 Index is the percentage of eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) in erythrocytes, as measured with a strictly standardized method, assessing another 24 fatty acids, and subjected to rigorous quality assurance. So far, 143 publications and >50 ongoing research projects are based on the HS-Omega-3 Index. A low HS-Omega-3 Index is a cardiovascular risk factor, and associated with suboptimal brain structure and function, as assessed with neurological and psychiatric methods. In intervention studies based on the HS-Omega-3 Index, many aspects of the health issues mentioned were improved in a consistent manner, whereas intervention studies with a conventional study design showed less consistent results. The HS-Omega-3 Index demonstrates the relevance of fatty acid analysis in clinical routine. In the USA, but not yet in Europe, the HS-Omega-3 Index has appeared in clinical routine.

Reviewed publication

MärzW.

Schlüsselwörter: Depression; Docosahexaensäure; Eicosapentaensäure; Fettsäureanalytik; Hirnfunktion; Hirnstruktur; kardiovaskuläre Erkrankungen

Keywords: brain function; brain structure; cardiovascular disease; depression; docosahexaenoic acid; eicosapentaenoic acid; fatty acid analysis

Literatur

  • 1.

    von Schacky C, Weber PC. Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans. J Clin Invest 1985;76:2446–50.CrossrefGoogle Scholar

  • 2.

    von Schacky C, Siess W, Fischer S, Weber PC. A comparative study of eicosapentaenoic acid metabolism by human platelets in vivo and in vitro. J Lipid Res 1985;26:457–64.Google Scholar

  • 3.

    von Schacky C, Fischer S, Weber PC. Long term effects of dietary marine omega-3 fatty acids upon plasma- and cellular lipids, platelet function and eicosanoid formation in humans. J Clin Invest 1985;76:1626–31.CrossrefGoogle Scholar

  • 4.

    von Schacky C. Prophylaxis of atherosclerosis with marine omega-3 fatty acids-a comprehensive strategy. Ann Int Med 1987;107:890–9.CrossrefGoogle Scholar

  • 5.

    Harris WS, von Schacky C. The omega-3 index: a new risk factor for death from CHD? Prev Med 2004;39:212–20.CrossrefGoogle Scholar

  • 6.

    von Schacky C. Omega-3 index for cardiovascular health. Nutrients 2014;6:799–814.CrossrefGoogle Scholar

  • 7.

    Harris WS, von Schacky C, Park Y. Standardizing methods for assessing omega-3 fatty acid biostatus. In: McNamara RK, editor. The Omega-3 Fatty Acid Deficiency Syndrome, Hauppauge, NY, USA. Nova Science Publishers 2013.Google Scholar

  • 8.

    Metherel AH, Aristizabal Henao JJ, Stark KD. EPA and DHA levels in whole blood decrease more rapidly when stored at –20°C as compared with room temperature, 4 and –75°C. Lipids 2013;48:1079–91.CrossrefGoogle Scholar

  • 9.

    Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG, Albright J, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the riskof primary cardiac arrest. J Am Med Assoc 1995;275:836–7.Google Scholar

  • 10.

    Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 2002;346:1113–8.Google Scholar

  • 11.

    Harris WS, Sands SA, Windsor SL, Ali HA, Stevens TL, Magalski A, et al. Omega-3 fatty acid levels in transplanted human hearts: effect of supplementation and comparison with erythrocytes. Circulation 2004;110;1645–9.CrossrefGoogle Scholar

  • 12.

    Arnold C, Markovic M, Blossey K, Wallukat G, Fischer R, Dechend R, et al. Arachidonic acid-metabolizing cytochrome P-450 enzymes are targets of omega-3 fatty acids. J Biol Chem 2010;285:32720–33.Google Scholar

  • 13.

    Aarsetøy H, Aarsetøy R, Lindner T, Staines H, Harris WS, Nilsen DW. Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids 2011;46:151–61.CrossrefGoogle Scholar

  • 14.

    Flock MR, Skulas-Ray AC, Harris WS, Etherton TD, Fleming JA, Kris-Etherton PM. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose-response randomized controlled trial. J Am Heart Assoc 2013;2:e000513.Google Scholar

  • 15.

    Harris WS, Thomas RM. Biological variability of blood omega-3 biomarkers. Clin Biochem 2010;43:338–40.CrossrefGoogle Scholar

  • 16.

    Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostag Leukotr Ess 2013;89:1–8.CrossrefGoogle Scholar

  • 17.

    Block RC, Harris WS, Reid KJ, Spertus JA. Omega-6 and trans fatty acids in blood cell membranes: a risk factor for acute coronary syndromes? Am Heart J 2008;156:1117–23.CrossrefGoogle Scholar

  • 18.

    Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 2007;32:619–34.CrossrefGoogle Scholar

  • 19.

    Ebbesson SO, Devereux RB, Cole S, Ebbesson LO, Fabsitz RR, Haack K, et al. Heart rate is associated with red blood cell fatty acid concentration: the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Am Heart J 2010;159:1020–5.CrossrefGoogle Scholar

  • 20.

    Salisbury AC, Amin AP, Harris WS, Chan PS, Gosch KL, Rich MW, et al. Predictors of omega-3 index in patients with acute myocardial infarction. Mayo Clin Proc 2011;86:626–32.CrossrefGoogle Scholar

  • 21.

    Harris WS, Pottala JV, Lacey SM, Vasan RS, Larson MG, Robins SJ. Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the Framingham Heart Study. Atherosclerosis 2012;225:425–31.Google Scholar

  • 22.

    von Schacky C. The omega-3 index as a risk factor for cardiovascular diseases. Prostag Oth Lipid M 2011;96:94–8.CrossrefGoogle Scholar

  • 23.

    Helfand M, Buckley DI, Freeman M, Fu R, Rogers K, Fleming C, et al. Emerging risk factors for coronary heart disease: a summary of systematic reviews conducted for the US preventive services task force. Ann Intern Med 2009;151:496–507.Google Scholar

  • 24.

    Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 2009;119:2408–16.CrossrefGoogle Scholar

  • 25.

    Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis 2008;197:821–8.Google Scholar

  • 26.

    Shearer GC, Pottala JV, Spertus JA, Harris WS. Red blood cell fatty acid patterns and acute coronary syndrome. PLoS ONE 2009;4:e5444.CrossrefGoogle Scholar

  • 27.

    Park Y, Lim J, Lee J, Kim SG. Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction. Br J Nutr 2009;102:1355–6.CrossrefGoogle Scholar

  • 28.

    Harris WS, Kennedy KF, O’Keefe JH Jr, Spertus JA. Red blood cell fatty acid levels improve GRACE score prediction of 2-yr mortality in patients with myocardial infarction. Int J Cardiol 2013;168:53–9.CrossrefGoogle Scholar

  • 29.

    Neubronner J, Schuchardt JP, Kressel G, Merkel M, von Schacky C, Hahn A. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr 2011;65:247–54.CrossrefGoogle Scholar

  • 30.

    Harris WS, Gonzales M, Laney N, Sastre A, Borkon AM. Effects of omega-3 fatty acids on heart rate in cardiac transplant recipients. Am J Cardiol 2006;98:1393–5.CrossrefGoogle Scholar

  • 31.

    Harris WS, Pottala JV, Sands SA, Jones PG. Comparison of the effects of fish and fish oil capsules on the n-3 fatty acid content of blood cells and plasma phospholipids. Am J Clin Nutr 2007;86:1621–5.Google Scholar

  • 32.

    Larson MK, Ashmore JH, Harris KA, Vogelaar JL, Pottala JV, Sprehe M, et al. Effects of omega-3 acid ethyl esters and aspirin, alone and in combination, on platelet function in healthy subjects. Thromb Haemost 2008;100:634–41.Google Scholar

  • 33.

    Carney RM, Freedland KE, Stein PK, Steinmeyer BC, Harris WS, Rubin EH, et al. Effect of omega-3 fatty acids on heart rate variability in depressed patients with coronary heart disease. Psychosom Med 2010;72:748–54.CrossrefGoogle Scholar

  • 34.

    Skulas-Ray AC, Kris-Etherton PM, Harris WS, Vanden Heuvel JP, Wagner PR, West SG. Dose response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy people with moderate hypertriglyceridemia. Am J Clin Nutr 2011;93:243–52.CrossrefGoogle Scholar

  • 35.

    Schuchardt JP, Neubronner J, Kressel G, Merkel A, von Schacky C, Hahn A. Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: Results from a six month randomized controlled trial. Prostag Leukotr Ess 2011;85:381–6.CrossrefGoogle Scholar

  • 36.

    Dewell A, Marvasti FF, Harris WS, Tsao P, Gardner CD. Dose-dependent effects of plant and marine omega-3 fatty acids on inflammatory markers in insulin resistant adults. A randomized controlled trial. J Nutrition 2011;141:2166–71.Google Scholar

  • 37.

    Maki KC, Bays HE, Dicklin MR, Johnson SL, Shabbout M. Effects of prescription omega-3-acid ethyl esters, coadministered with atorvastatin, on circulating levels of lipoprotein particles, apolipoprotein CIII, and lipoprotein-associated phospholipase A2 mass in men and women with mixed dyslipidemia. J Clin Lipidol 2011;5:483–92.CrossrefGoogle Scholar

  • 38.

    Krul ES, Lemke SL, Mukherjea R, Taylor ML, Goldstein DA, Su H, et al. Effects of duration of treatment and dosage of eicosapentaenoic acid and stearidonic acid on red blood cell eicosapentaenoic acid content. Prostag Leukotr Ess 2012;86:51–9.CrossrefGoogle Scholar

  • 39.

    An WS, Lee SM, Son YK, Kim SE, Kim KH, Han JY, et al. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients. Prostag Leukotr Ess 2012;86:29–34.CrossrefGoogle Scholar

  • 40.

    Shearer GC, Pottala JV, Hansen SN, Brandenburg V, Harris WS. Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial. J Lipid Res 2012;53:2429–35.CrossrefGoogle Scholar

  • 41.

    Oelrich B, Dewell A, Gardner CD. Effect of fish oil supplementation on serum triglycerides, LDL cholesterol and LDL subfractions in hypertriglyceridemic adults. Nutr Metab Cardiovasc Dis 2013;23:350–7.CrossrefGoogle Scholar

  • 42.

    Berge K, Musa-Veloso K, Harwood M, Hoem N, Burri L. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglycerides. Nutr Res 2014;34:126–33.CrossrefGoogle Scholar

  • 43.

    von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind placebo-controlled trial. Ann Int Med 1999;130:554–62.CrossrefGoogle Scholar

  • 44.

    den Ruijter HM, Peters SA, Groenewegen KA, Anderson TJ, Britton AR, Dekker JM, et al. Common carotid intima-media thickness does not add to Framingham risk score in individuals with diabetes mellitus: the USE-IMT initiative. Diabetologia 2013;56:1494–502.Google Scholar

  • 45.

    Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, Thompson A, et al. Lipid-related markers and cardiovascular disease prediction. J Am Med Assoc 2012;307:2499–506.Google Scholar

  • 46.

    Perk J, de Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012;33:1635–701.Google Scholar

  • 47.

    Superko HR, Superko SM, Nasir K, Agatston A, Garrett BC. Omega-3 fatty acid blood levels: clinical significance and controversy. Circulation 2013;128:154–61.Google Scholar

  • 48.

    Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. A systematic review and meta-analysis. Ann Intern Med 2014;160:398–406.Google Scholar

  • 49.

    Davidson MH, Johnson J, Rooney MW, Kyle ML, Kling DF. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: The ECLIPSE (Epanova® compared to Lovaza® in a pharmacokinetic single-dose evaluation) study. J Clin Lipidol 2012;6:573–84.CrossrefGoogle Scholar

  • 50.

    Hussey EK, Portelli S, Fossler MJ, Gao F, Harris WS, Blum RA, et al. Relative bioavailability of an emulsion formulation for omega-3-acid ethyl esters compared to the commercially available formulation: A randomized, parallel-group, single-dose study followed by repeat dosing in healthy volunteers. Clin Pharm Drug Develop 2012;1:14–23.CrossrefGoogle Scholar

  • 51.

    Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB. Bioavailability of marine n-3 fatty acid formulations. Prostag Leukotr Ess 2010;83:137–41.CrossrefGoogle Scholar

  • 52.

    Köhler A, Bittner D, Löw A, von Schacky C. Effects of a convenience drink fortified with n-3 fatty acids on the n-3 index. Br J Nutr 2010;104:729–36.CrossrefGoogle Scholar

  • 53.

    Amin AA, Menon RA, Reid KJ, Harris WS, Spertus JA. Acute coronary syndrome patients with depression have low blood cell membrane omega-3 fatty acid levels. Psychosom Med 2008;70:856–62.CrossrefGoogle Scholar

  • 54.

    Ali S, Garg SK, Cohen BE, Bhave P, Harris WS, Whooley MA. Association between omega-3 fatty acids and depressive symptoms among patients with established coronary artery disease: Data from the heart and soul study. Psychother Psychosom 2009;78:125–7.CrossrefGoogle Scholar

  • 55.

    Carney RM, Freedland KE, Rubin EH, Rich MW, Steinmeyer BC, Harris WS. Omega-3 augmentation of sertaline in treatment of depression in patients with coronary heart disease. J Am Med Assoc 2009;302:1651–3.Google Scholar

  • 56.

    Baghai TC, Varallo-Bedarida G, Born C, Häfner S, Schüle C, Eser D, et al. Major depression is associated with cardiovascular risk factors and low Omega-3 Index. J Clin Psychiat 2011;72:1242–7.Google Scholar

  • 57.

    Pottala JV, Churchill SW, Talley JA, Lynch DA, von Schacky C, Harris WS. Red blood cell fatty acids are associated with depression in a case-control study of adolescents. Prostag Leukotr Ess 2012;86:161–5.CrossrefGoogle Scholar

  • 58.

    Park Y, Kim M, Baek D, Kim SH. Erythrocyte n-3 polyunsaturated fatty acids and seafood intake decrease risk of depression: Case-control study in Korea. Ann Nutr Metab 2012;61:25–31.CrossrefGoogle Scholar

  • 59.

    Markhus MW, Skotheim S, Graff IE, Frøyland L, Braarud HC, Stormark KM, et al. Low omega-3 index in pregnancy is a possible biological risk factor for postpartum depression. PLoS One 2013;8:e67617.Google Scholar

  • 60.

    Montgomery P, Burton JR, Sewell RP, Spreckelsen TF, Richardson AJ. Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: a cross-sectional analysis from the DOLAB study. PLoS One 2013;8:e66697.Google Scholar

  • 61.

    Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S, et al. Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology 2012;78:658–64.CrossrefGoogle Scholar

  • 62.

    Johnston DT, Deuster PA, Harris WS, Macrae H, Dretsch MN. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr Neurosci 2013;16:30–8.CrossrefGoogle Scholar

  • 63.

    Ammann EM, Pottala JV, Harris WS, Espeland MA, Wallace R, Denburg NL, et al. Omega-3 fatty acids and domain-specific cognitive aging: Secondary analyses of data from WHISCA. Neurology 2013;81:1484–91.CrossrefGoogle Scholar

  • 64.

    Pottala JV, Yaffe K, Robinson J, Espeland MA, Wallace R, Harris WS. Higher RBC EPA+DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology 2014;82:435–42.CrossrefGoogle Scholar

  • 65.

    Persons JE, Robinson JG, Ammann EM, Coryell WH, Espeland MA, Harris WS, et al. Omega-3 fatty acid biomarkers and subsequent depressive symptoms. Int J Geriatr Psychiatry 2014;29:747–57.CrossrefGoogle Scholar

  • 66.

    Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr 2007;98:873–7.Google Scholar

  • 67.

    Mulder KA, King DJ, Innis SM. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS One 2014;9:e83764.Google Scholar

  • 68.

    Bloch MH, Qawasmi A. Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 2011;50: 991–1000.CrossrefGoogle Scholar

  • 69.

    Milte CM, Parletta N, Buckley JD, Coates AM, Young RM, Howe PR. Increased erythrocyte eicosapentaenoic acid and docosahexaenoic acid are associated with improved attention and behavior in children with ADHD in a randomized controlled three-way crossover trial. J Atten Disord 2013. Epub ahead of print 8 Nov 2013. DOI: 10.1177/1087054713510562.CrossrefGoogle Scholar

  • 70.

    Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 2011;72:1577–84.CrossrefGoogle Scholar

  • 71.

    Stonehouse W, Conlon CA, Podd J, Hill SR, Minihane AM, Haskell C, et al. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am J Clin Nutr 2013;97:1134–43.CrossrefGoogle Scholar

  • 72.

    Witte AV, Kerti L, Hermannstädter HM, Fiebach JB, Schreiber SJ, Schuchardt JP, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex 2013. Doi 10.1093/cercor/bht163. [Epub ahead of print 24 Jun 2013].CrossrefGoogle Scholar

  • 73.

    Mazereeuw G, Lanctôt KL, Chau SA, Swardfager W, Herrmann N. Effects of ω-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol Aging 2012;33:1482 e17–29.Google Scholar

  • 74.

    Portillo-Reyes V, Pérez-García M, Loya-Méndez Y, Puente AE. Clinical significance of neuropsychological improvement after supplementation with omega-3 in 8-12 years old malnourished Mexican children: a randomized, double-blind, placebo and treatment clinical trial. Res Dev Disabil 2014;35:861–70.CrossrefGoogle Scholar

  • 75.

    Haast RA, Kiliaan AJ. Impact of fatty acids on brain circulation, structure and function. Prostag Leukotr Ess 2014. Epub ahead of print 15 Jan 2014. DOI: 10.1016/j.plefa.2014.01.002.CrossrefGoogle Scholar

  • 76.

    Bauer I, Hughes M, Rowsell R, Cockerell R, Pipingas A, Crewther S, et al. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum Psychopharmacol 2014;29:133–44.CrossrefGoogle Scholar

  • 77.

    Ladesich JB, Pottala JV, Romaker A, Harris WS. Membrane levels of omega-3 docosahexaenoic acid is associated with obstructive sleep apnea. J Clin Sleep Med 2011;7:391–6.Google Scholar

  • 78.

    Scorza FA, Cavalheiro EA, Scorza CA, Galduróz JC, Tufik S, Andersen ML. Sleep apnea and inflammation-getting a good night’s sleep with omega-3 supplementation. Front Neurol 2013;4:193.Google Scholar

  • 79.

    Miles EA, Calder PC. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr 2012;107(Suppl 2):S171–84.Google Scholar

  • 80.

    Park Y, Lee AR, Shim SC, Lee JH, Choe JY, Ahn H, et al. Effect of n-3 polyunsaturated fatty acid supplementation in patients with rheumatoid arthritis: a 16-week randomized, double-blind, placebo-controlled, parallel-design multicenter study in Korea. J Nutr Biochem 2013;24:1367–72.CrossrefGoogle Scholar

  • 81.

    Lev-Tzion R, Griffiths AM, Leder O, Turner D. Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev 2014;28:CD006320.Google Scholar

  • 82.

    Moyers B, Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. Relation of whole blood n-3 fatty acid levels to exercise parameters in patients with stable coronary artery disease (from the Heart and Soul Study). Am J Cardiol 2011;107:1149–54.CrossrefGoogle Scholar

  • 83.

    Herbst EA, Paglialunga S, Gerling C, Whitfield J, Mukai K, Chabowski A, et al. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J Physiol 2014;592:1341–52.Google Scholar

  • 84.

    Lembke P, Capodice J, Hebert K, Swenson T. Influence of omega-3 (n3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med 2014;13:151–6.Google Scholar

  • 85.

    Moon HJ, Kim TH, Byun DW, Park Y. Positive correlation between erythrocyte levels of n-3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann Nutr Metab 2012;60:146–53.CrossrefGoogle Scholar

  • 86.

    Tartibian B, Hajizadeh Maleki B, Kanaley J, Sadeghi K. Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: a randomized, repeated measures study. Nutr Metab (Lond) 2011;8:71.CrossrefGoogle Scholar

  • 87.

    Kelly OJ, Gilman JC, Kim Y, Ilich JZ. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis. Nutr Res 2013;33:521–33.CrossrefGoogle Scholar

  • 88.

    Salisbury AC, Harris WS, Amin AP, Reid KJ, O’Keefe Jr JH, Spertus JA. Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction. Am J Cardiol 2012;109:13–8.CrossrefGoogle Scholar

  • 89.

    Wachira JK, Larson MK, Harris WS. n-3 Fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights. Br J Nutr 2014;111: 1652–62.CrossrefGoogle Scholar

  • 90.

    Brasky TM, Darke AK, Song X, Tangen CM, Goodman PJ, Thompson IM, et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J Natl Cancer Inst 2013;105:1132–41.CrossrefGoogle Scholar

  • 91.

    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 2004;79:935–45.Google Scholar

  • 92.

    Shannon J, King IB, Moshofsky R, Lampe JW, Gao DL, Ray RM, et al. Erythrocyte fatty acids and breast cancer risk: a case-control study in Shanghai, China. Am J Clin Nutr 2007;851090–7.Google Scholar

  • 93.

    Kuriki K, Hirose K, Wakai K, Matsuo K, Ito H, Suzuki T, et al. Breast cancer risk and erythrocyte compositions of n-3 highly unsaturated fatty acids in Japanese. Int J Cancer 2007;121:377–85.CrossrefGoogle Scholar

  • 94.

    Norrish AE, Skeaff CM, Arribas GL, Sharpe SJ, Jackson RT. Prostate cancer risk and consumption of fish oils: a dietary biomarker-based case-control study. Br J Cancer 1999;81:1238–42.CrossrefGoogle Scholar

  • 95.

    Godley PA, Campbell MK, Gallagher P, Martinson FE, Mohler JL, et al. Biomarkers of essential fatty acid consumption and risk of prostatic carcinoma. Cancer Epidemiol Biomarkers Prev 1996;5:889–95.Google Scholar

  • 96.

    Ritch CR, Wan RL, Stephens LB, Taxy JB, Huo D, Gong EM, et al. Dietary fatty acids correlate with prostate cancer biopsy grade and volume in Jamaican men. J Urol 2007;177:97–101.CrossrefGoogle Scholar

  • 97.

    Shannon J, O’Malley J, Mori M, Garzotto M, Palma AJ, King IB. Erythrocyte fatty acids and prostate cancer risk: a comparison of methods. Prostag Leukotr Ess 2010;83;161–9.CrossrefGoogle Scholar

  • 98.

    Newcomer LM, King IB, Wicklund KG, Stanford JL. The association of fatty acids with prostate cancer risk. Prostate 2001;47;262–8.CrossrefGoogle Scholar

  • 99.

    Okuno M, Hamazaki K, Ogura T, Kitade H, Matsuura T, Yoshida R, et al. Abnormalities in fatty acids in plasma, erythrocytes and adipose tissue in Japanese patients with colorectal cancer. In Vivo 2013;27:203–10.Google Scholar

  • 100.

    Brouwer IA, Geleijnse JM, Klaasen VM, Smit LA, Giltay EJ, de Goede J, et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): Results from the alpha omega trial. PLoS One 2013;8:e81519.Google Scholar

  • 101.

    von Schacky C. Convenience drinks fortified with n-3 fatty acids: a systematic review. In: Preedy VR, SrirajaskanthanR, Patel VB, editors. Handbook of Food Fortification – From Concepts to Public Health Applications, Volume 2. In: Bendich A, series editor. Nutrition and Health.,., Humana Press, New York, NY, USA, 2013:95–103.Google Scholar

  • 102.

    Lopez AD, Murray CC. The global burden of disease, 1990–2020. Nat Med 1998;4:1241–3.Google Scholar

  • 103.

    Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, McConnell JP. Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: Observations from 160,000 patients. Prostag Leukotr Ess 2013;88:257–63.Google Scholar

About the article

Korrespondenz: Clemens von Schacky, Omegametrix, Am Klopferspitz, 19 82152 Martinsried, Tel.: +49 89 5506 3007, Fax: +49 89 5506 3008, E-Mail: ; Omegametrix, Martinsried, Deutschland; Präventive Kardiologie, Medizinische Klinik I, Ludwig Maximilians-Universität München, München, Deutschland


Received: 2014-03-24

Accepted: 2014-07-08

Published Online: 2014-08-06

Published in Print: 2014-07-02


Citation Information: LaboratoriumsMedizin, Volume 38, Issue 4, Pages 167–177, ISSN (Online) 1439-0477, ISSN (Print) 0342-3026, DOI: https://doi.org/10.1515/labmed-2014-0007.

Export Citation

©2014 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in