Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

LaboratoriumsMedizin - Journal of Laboratory Medicine

Offizielles Organ der Deutschen Vereinten Gesellschaft für Klinische Chemie und Laboratoriumsmedizin e.V. (DGKL) und affiliiert mit der Österreichischen Gesellschaft für Laboratoriumsmedizin und Klinische Chemie (ÖGLMKC)

Editor-in-Chief: Schuff-Werner, Peter

Editorial Board Member: Ahmad-Nejad, Parviz / Bidlingmaier, Martin / Borucki, Katrin / Karsten, Conrad / Fraunberger, Peter / Ghebremedhin, Beniam / Holdenrieder, Stefan / Kiehntopf, Michael / Klein, Hanns-Georg / Klouche, Mariam / Kohse, Klaus P. / Kratzsch, Jürgen / Luppa, Peter B. / März, Winfried / Nebe, Carl Thomas / Orth, Matthias / Ruf, Andreas / Sack, Ulrich / Steimer, Werner / Weber, Bernard / Wieland, Eberhard / Tumani, Hayrettin / Zettl, Uwe K.

6 Issues per year


IMPACT FACTOR 2016: 0.176
5-year IMPACT FACTOR: 0.200

CiteScore 2016: 0.27

SCImago Journal Rank (SJR) 2015: 0.133
Source Normalized Impact per Paper (SNIP) 2015: 0.281

Online
ISSN
1439-0477
See all formats and pricing
In This Section
Volume 38, Issue 4 (Jul 2014)

Issues

Whole genome sequencing (WGS), whole exome sequencing (WES) and clinical exome sequencing (CES) in patient care

Gesamt-Genom-Sequenzierung, Gesamt-Exom-Sequenzierung und klinische Exom-Sequenzierung in der Patientenversorgung

Hanns-Georg Klein
  • Corresponding author
  • Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, Lochhamer Str. 29, 82152 Martinsried, Germany
  • Email:
/ Peter Bauer
  • Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
/ Tina Hambuch
  • Illumina Clinical Service Laboratory, Illumina Inc., San Diego, CA, USA
Published Online: 2014-08-06 | DOI: https://doi.org/10.1515/labmed-2014-0025

Abstract

Next generation sequencing (NGS, also called Massively Parallel Sequencing) can be performed using a number of different platforms. The general process is very similar across them all: (1) extracted DNA is sheared into fragments (which, in targeted methods can be captured using probes); (2) these fragments are isolated physically on slides (usually called flow cells) or in emulsions and individually amplified, resulting in a library; and (3) the multiple individually amplified fragments are then simultaneously sequenced. After sequencing each fragment individually, the fragments must be re-assembled and the positions called using a series of bioinformatics algorithms. Excellent reviews are available that discuss the technical differences in detail. Recently, the value of NGS for diagnostics in patient care has been widely recognized and its applications include mutation detection in human genetics, molecular pathology and infectious agents as well as HLA typing, RNA sequencing and the detection of cell-free DNA. This paper focuses on applications of three different scales of NGS in human genetics diagnostics and evaluates its status based on our current understanding.

Zusammenfassung

Next Generation Sequencing (NGS, auch als massiv-parallele Sequenzierung bezeichnet) kann unter Verwendung verschiedener Geräteplattformen durchgeführt werden. Die grundlegenden Arbeitsschritte sind bei allen Plattformen sehr ähnlich: (1) die extrahierte DNA wird in Fragmente gescheert (welche bei gezielten Anreicherungsverfahren mittels Sonden abgefangen werden können), (2) die Fragmente werden physikalisch auf Objektträgern (üblicherweise als Durchflusszellen bezeichnet) oder in Emulsionen isoliert und individuell amplifiziert, woraus eine sog. Bibliothek entsteht und (3) die verschiedenen individuell amplifizierten Fragmente werden simultan sequenziert. Nach der Sequenzierung müssen die einzelnen Fragmente mit Hilfe von bioinformatischen Algorithmen an ihrer richtigen Position wieder zusammengesetzt werden. Es gibt ausgezeichnete Übersichtsartikel, welche die technischen Unterschiede im Detail beschreiben. Seit kurzem ist der Wert von NGS für die Diagnostik und in der Patientenversorgung allgemein anerkannt. Die Anwendungen umfassen den Nachweis von Mutationen in der Humangenetik, Molekularpathologie und Infektiologie sowie die HLA-Typisierung, RNA-Sequenzierung und die Detektion von zellfreier DNA. Dieser Beitrag konzentriert sich auf Anwendungen von drei verschiedenen Skalen von NGS in der humangenetischen Diagnostik und wertet deren Bedeutung auf der Grundlage unseres derzeitigen Verständnisses.

Reviewed publication: KleinH.-G.

Keywords: Clinical exome sequencing (CES); molecular genetic diagnostics; multi-gene panel sequencing (MGPS); next generation sequencing (NGS); translational genetics; whole exome sequencing (WES); whole genome sequencing (WGS)

Schlüsselwörter:: Gesamt-Genom-Sequenzierung; Gesamt-Exom-Sequenzierung und klinische Exom-Sequenzierung; molekulargenetische Diagnostik; Multi-Gene Panel Sequenzierung (MGPS); translationale Genetik

References

  • 1.

    Mardis E. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif) 2013;6:287–303. [Web of Science] [Crossref]

  • 2.

    Tucker T, Marra M, Friedmann JM. Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 2009;85:142–54. [Web of Science]

  • 3.

    Voelkerding KV, Dames S, Durtschi JD. Next generation sequencing for clinical diagnostics – principles and application to targeted resequencing for hypertrophic cardiomyopathy. J Mol Diagn 2010;12:539–51. [Web of Science] [Crossref] [PubMed]

  • 4.

    Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, et al. Next generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 2011;11:333–43. [PubMed]

  • 5.

    Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 2010;42:30–5. [Crossref] [PubMed]

  • 6.

    Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511:344–7.

  • 7.

    Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 2011;13:255–62. [Web of Science] [Crossref]

  • 8.

    Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 2012;4:154ra35. [Web of Science]

  • 9.

    Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 2013;369:1502–11. [Web of Science]

  • 10.

    Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011;478:57–63. [Web of Science]

  • 11.

    Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 2014;343:506–11. [Web of Science]

  • 12.

    Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol 2014;32:246–51. [Web of Science] [Crossref] [PubMed]

  • 13.

    Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 2008;29:1282–91. [Web of Science]

  • 14.

    The Human Gene Mutation Database. Available at: www.hgmd.org. Accessed 23 June, 2014.

  • 15.

    Illumina. Products/TruSight One Sequencing Panel. Available at: www.illumina.com/products/trusight-one-sequencing-panel.ilmn. Accessed 23 June, 2014.

  • 16.

    CLCbio. CLC Genomics Workbench. Available at: www.clcbio.com/products/clc-genomics-workbench. Accessed 23 June, 2014.

  • 17.

    Rauch A, Hoyer J, Guth S, Zweier C, Kraus C, Becker C, et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet 2006;140:2063–74.

  • 18.

    Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, et al. A de novo paradigm for mental retardation. Nat Genet 2010;42:1109–12. [Web of Science]

  • 19.

    Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012;380:1674–82. [Web of Science]

  • 20.

    de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012;367:1921–9. [Web of Science]

  • 21.

    Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet 2012;20:490–7. [Crossref] [PubMed] [Web of Science]

  • 22.

    Vogl I, Benet-Pagès A, Eck SH, Kuhn M, Vosberg S, Greif PA, et al. Applications and data analysis of next-generation sequencing. J Lab Med 2013;37:305–15.

About the article

Corresponding author: Hanns-Georg Klein, Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, Lochhamer Str. 29, 82152 Martinsried, Germany, Tel.: +49-89/895578-0, Fax: +49-89/895578-78, E-Mail:


Received: 2014-07-04

Accepted: 2014-07-07

Published Online: 2014-08-06

Published in Print: 2014-07-02



Citation Information: LaboratoriumsMedizin, ISSN (Online) 1439-0477, ISSN (Print) 0342-3026, DOI: https://doi.org/10.1515/labmed-2014-0025. Export Citation

Comments (0)

Please log in or register to comment.
Log in