Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Laboratory Medicine

Official Journal of the German Society of Clinical Chemistry and Laboratory Medicine

Editor-in-Chief: Schuff-Werner, Peter

Ed. by Ahmad-Nejad, Parviz / Bidlingmaier, Martin / Bietenbeck, Andreas / Conrad, Karsten / Findeisen, Peter / Fraunberger, Peter / Ghebremedhin, Beniam / Holdenrieder, Stefan / Kiehntopf, Michael / Klein, Hanns-Georg / Kohse, Klaus P. / Kratzsch, Jürgen / Luppa, Peter B. / Meyer, Alexander von / Nebe, Carl Thomas / Orth, Matthias / Röhrig-Herzog, Gabriele / Sack, Ulrich / Steimer, Werner / Weber, Thomas / Wieland, Eberhard / Winter, Christof / Zettl, Uwe K.


IMPACT FACTOR 2018: 0.389

CiteScore 2018: 0.22

SCImago Journal Rank (SJR) 2018: 0.156
Source Normalized Impact per Paper (SNIP) 2018: 0.089

Online
ISSN
2567-9449
See all formats and pricing
More options …
Volume 38, Issue 6

Issues

Plasma nitric oxide and oxidized LDL levels in systemic lupus erythematosus (SLE)

Stickoxid-und oxidierte LDL-Spiegel bei Patienten mit systemischem Lupus erythematodes (SLE)

Mohammad Najafi
  • Corresponding author
  • Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Freshteh Parto / Parisa Mohammadi / Mohammad Shabani
Published Online: 2014-11-25 | DOI: https://doi.org/10.1515/labmed-2014-0037

Abstract

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with different clinical manifestations. The inflammatory and oxidative modification reactions are the most important events associated with cardiovascular complications of SLE patients. The aim of this study was to investigate the nitric oxide (NO) and the oxidized low-density lipoprotein (Ox-LDL) levels in order to explain the role of oxidized particles in development of clinical manifestations.

Methods: A total of 80 subjects, SLE patients (n=40) and healthy controls (n=40), were recruited and matched regarding to age, gender, and body mass index (BMI). The biochemical parameters were measured using routine laboratory methods. The plasma Ox-LDL and NO levels were assayed with ELISA and colorimetric techniques, respectively.

Results: The plasma NO level was significantly high in SLE patients (33.03±18.09 μmol/mL) in comparison to healthy controls (15.25±11.54 μmol/mL). In contrast, the total and normalized (Ox-LDL/LDL) plasma Ox-LDL values were low in SLE patients (p=0.2 and p<0.05, respectively). A linear negative correlation was also observed between the plasma Ox-LDL and NO levels (r=0.25, p<0.05). Multiple logistic regression analysis showed the critical role of NO on Ox-LDL level. Moreover, the disease activity and medications did not relate to the plasma Ox-LDL level (p>0.5).

Conclusions: The results showed that the excess NO prevents the oxidation of LDL particles so that the inflammatory events in comparison to oxidative modifications may be most involved in clinical complications of SLE patients.

Zusammenfassung

Hintergrund: Der systemische Lupus erythematodes (SLE) ist eine Autoimmunerkrankung mit verschiedenen klinischen Erscheinungsformen. Entzündungen und oxidative Veränderungen sind die bedeutendsten Erscheinungen in Zusammenhang mit kardiovaskulären Erkrankungen bei SLE-Patienten. Das Ziel dieser Studie war die Untersuchungen der Spiegel des Stickoxids und des oxidierten LDL (Ox-LDL), um die Rolle von oxidierten Partikeln bei der Entwicklung klinischer Erscheinungen zu erklären.

Methoden: Insgesamt 80 Personen (40 SLE-Patienten und 40 gesunde Probanden als Kontrollgruppe) wurden rekrutiert und hinsichtlich Alter, Geschlecht und BMI gematcht. Die biochemischen Parameter wurden mit Routinelabormethoden untersucht. Stickoxidspiegel und Spiegel des oxidierten LDL wurden mit ELISAs und kolorimetrischen Methoden bestimmt.

Ergebnisse: Der Stickoxidspiegel in SLE-Patienten war signifikant hoch (33,03±18,09) im Vergleich zu den gesunden Kontrollen (15,25±11,54 μmol/mL). Im Gegensatz dazu waren die Gesamt- und normalisierten Ox-LDL-Level niedriger bei SLE-Patienten (p=0,2 und p=0,05). Ein negativer linearer Zusammenhang zwischen Ox-LDL- und Stickoxidleveln konnte ebenfalls festgestellt werden (r=0,25, p<0,05). Multiple logistische Regressionsanalysenzeigten die kritische Rolle von Stickoxid auf Ox-LDL-Spiegel. Zudem gab es keinen Zusammenhang zwischen Krankheitsaktivität und Medikation zum Ox-LDL-Spiegel (p>0,5).

Schlussfolgerungen: Unsere Ergebnisse zeigen, dass erhöhtes Stickoxid die Oxidation von LDL-Partikeln verhindert, so dass Entzündungen im Vergleich zu oxidativen Veränderungen einen größeren Einfluss auf klinische Komplikationen bei SLE-Patienten haben.

Reviewed publication

SackU.ConradK.

Keywords: nitric oxide (NO); oxidized LDL (Ox-LDL); systemic lupus erythematosus (SLE)

Schlüsselwörter: oxidiertes LDL; Stickoxid (NO); systemischer Lupus erythematodes (SLE)

References

  • 1.

    Askanase A, Shum K, Mitnick H. Systemic lupus erythematosus: an overview. Soc Work Health Care 2012;51:576–86.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 2.

    O’Neill S, Cervera R. Systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2010;2:841–55.CrossrefGoogle Scholar

  • 3.

    Velázquez-Cruz R, Jiménez-Morales S, Ramírez-Bello J, Aguilar-Delfín I, Salas-Martínez, Barca Ruiz V, et al. Systemic lupus erythematosus: genomics of the disease. Gac Med Mex 2012;148:371–80.Google Scholar

  • 4.

    Petri M. Sex hormones and systemic lupus erythematosus. Lupus 2008;17:412–5.CrossrefPubMedGoogle Scholar

  • 5.

    Symmons DP, Gabriel SE. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat Rev Rheumatol 2011;31:399–408.CrossrefGoogle Scholar

  • 6.

    Liu ZY, Kong W. The role of adventitia in atherosclerosis. Sheng Li Ke Xue Jin Zhan 2010;41:177–82.PubMedGoogle Scholar

  • 7.

    Oates JC, Gilkeson GS. The biology of nitric oxide and other reactive intermediates in systemic lupus erythematosus. Clin Immunol 2006;121:243–50.PubMedCrossrefGoogle Scholar

  • 8.

    Wang G, Pierangeli SS, Papalardo E, Ansari GA, Khan MF. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 2010;62:2064–72.Web of SciencePubMedGoogle Scholar

  • 9.

    Sherer Y, Zinger H, Shoenfeld Y. Atherosclerosis in systemic lupus erythematosus. Autoimmunity 2010;43:98–102.PubMedCrossrefGoogle Scholar

  • 10.

    Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, et al. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem 2001;276:13750–5.Google Scholar

  • 11.

    Kim SH, Lee CK, Lee EY, Park SY, Cho YS, Yoo B, et al. Serum oxidized low-density lipoproteins in rheumatoid arthritis. Rheumatol Int 2004;24:230–3.PubMedGoogle Scholar

  • 12.

    Frostegård J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 2005;52:192–200.PubMedCrossrefGoogle Scholar

  • 13.

    Shimada K, Mokuno H, Matsunaga E, Miyazaki T, Sumiyoshi K, Miyauchi K, et al. Circulating oxidized low-density lipoprotein is an independent predictor for cardiac event in patients with coronary artery disease. Atherosclerosis 2004;174:343–7.Google Scholar

  • 14.

    Hasegawa A, Toshima S, Nakano A, Nagai R. Oxidized LDL in patients with coronary heart disease and normal subjects. Nippon Rinsho 1999;57:2754–8.PubMedGoogle Scholar

  • 15.

    Wang JJ, Han AZ, Meng Y, Gong JB, Zhang CN, Li K, et al. Measurement of oxidized lipoprotein (a) in patients with acute coronary syndromes and stable coronary artery disease by 2 ELISAs: using different capture antibody against oxidized lipoprotein (a) or oxidized LDL. Clin Biochem 2010;43:571–5.CrossrefWeb of SciencePubMedGoogle Scholar

  • 16.

    Al Gadban MM, German J, Truman JP, Soodavar F, Riemer EC, Twal WO, et al. Lack of nitric oxide synthases increases lipoprotein immune complex deposition in the aorta and elevates plasma sphingolipid levels in lupus. Cell Immunol 2012;276: 42–51.Web of ScienceGoogle Scholar

  • 17.

    Yassin LM, Londoño J, Montoya G, De Sanctis JB, Rojas M, Ramirez LA, et al. Atherosclerosis development in SLE patients is not determined by monocytes ability to bind/endocytose Ox-LDL. Autoimmunity 2011;44:201–10.Web of ScienceCrossrefPubMedGoogle Scholar

  • 18.

    Nowak B, Szmyrka-Kaczmarek M, Durazińska A, Płaksej R, Borysewicz K, Korman L, et al. Anti-ox-LDL antibodies and anti-ox-LDL-B2GPI antibodies in patients with systemic lupus erythematosus. Adv Clin Exp Med 2012;21:331–5.Google Scholar

  • 19.

    Anania C, Gustafsson T, Hua X, Su J, Vikström M, de Faire U, et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res Ther 2010;12:R214.CrossrefGoogle Scholar

  • 20.

    Narshi CB, Giles IP, Rahman A. The endothelium: an interface between autoimmunity and atherosclerosis in systemic lupus erythematosus? Lupus 2011;20:5–13.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 21.

    Ahmad R, Ahsan H. Role of peroxynitrite-modified biomolecules in the etiopathogenesis of systemic lupus erythematosus. Clin Exp Med 2012;14:111.PubMedWeb of ScienceGoogle Scholar

  • 22.

    Santos MJ, Pedro LM, Canhão H, Fernandes EFJ, Canas da Silva J, Fonseca JE, et al. Hemorheological parameters are related to subclinical atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis patients. Atherosclerosis 2011;219:821–6.Web of ScienceGoogle Scholar

  • 23.

    Ames PR, Batuca JR, Ciampa A, Iannaccone L, Delgado Alves J. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheumatol 2010;37:2523–30.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 24.

    Perl A. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity 2010;43:32–47.PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Correspondence: Mohammad Najafi, PhD, Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran, Tel.: +982188622742, Fax: +982188622742, E-Mail:


Received: 2014-05-29

Accepted: 2014-10-29

Published Online: 2014-11-25

Published in Print: 2014-12-01


Citation Information: LaboratoriumsMedizin, Volume 38, Issue 6, Pages 319–324, ISSN (Online) 1439-0477, ISSN (Print) 0342-3026, DOI: https://doi.org/10.1515/labmed-2014-0037.

Export Citation

©2014 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in