Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Laboratory Medicine

Official Journal of the German Society of Clinical Chemistry and Laboratory Medicine

Editor-in-Chief: Schuff-Werner, Peter

Ed. by Ahmad-Nejad, Parviz / Bidlingmaier, Martin / Bietenbeck, Andreas / Conrad, Karsten / Findeisen, Peter / Fraunberger, Peter / Ghebremedhin, Beniam / Holdenrieder, Stefan / Kiehntopf, Michael / Klein, Hanns-Georg / Kohse, Klaus P. / Kratzsch, Jürgen / Luppa, Peter B. / Meyer, Alexander von / Nebe, Carl Thomas / Orth, Matthias / Röhrig-Herzog, Gabriele / Sack, Ulrich / Steimer, Werner / Weber, Thomas / Wieland, Eberhard / Winter, Christof / Zettl, Uwe K.

IMPACT FACTOR 2018: 0.389

CiteScore 2018: 0.22

SCImago Journal Rank (SJR) 2018: 0.156
Source Normalized Impact per Paper (SNIP) 2018: 0.089

See all formats and pricing
More options …
Volume 40, Issue 4


Flow cytometry as an important tool in the diagnosis of immunodeficiencies demonstrated in a patient with ataxia-telangiectasia

Alessandro De Stefano
  • Corresponding author
  • Institute for Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
  • Laboratory of Clinical Biochemistry, Department of Laboratory Medicine, Tor Vergata University Hospital, Viale Oxford 81, Roma
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Boldt / Lydia Schmiedel / Ulrich Sack / Karim Kentouche
Published Online: 2016-07-27 | DOI: https://doi.org/10.1515/labmed-2016-0018



Ataxia-telangiectasia (AT) is a rare hereditary genetic disease caused by one of more than 500 mutations in the ataxia-telangiectasia mutated gene (ATM). AT is characterized by cerebellar ataxia, telangiectasia of blood vessels, immunodeficiency with frequent lung infections, susceptibility to cancer, and sensitivity to ionizing radiation. A correct immunophenotyping of lymphocytes is necessary to identify the cause of the immunodeficiency.


We evaluated a patient (female, 15 years) with AT by estimation of antibody titers, characterization of peripheral B- and T-cell subsets and investigation of proliferation response of B- and T-cells undergoing specific stimulation with PHA, CD3/CD28, and R848/CD40L. A healthy volunteer was used as a control.


The patient showed a heterozygous mutation in the ATM gene (c.5932G>T[p.E1978X]/c.7788+3A>G). Interestingly, despite a very low level of class-switched memory B-cells normal levels of serum immunoglobulins and antibody titers to viral and bacterial antigens could be observed. Furthermore, the analysis revealed an increase in total numbers of T-cells, caused by an extraordinarily high amount of γ/δ T-cells (CD3+CD4–CD8) (>75% of T-cells). Remaining CD4+/CD8+T-cells were decreased, naïve cells and recent thymic emigrants (RTEs) were strongly deficient. Subsequently, the proliferation activity of T-cells was strongly impaired, in contrast to normal B-cell proliferation both compared to the healthy control.


Initial lymphocyte immunophenotyping suggested a defect in T- and B-cell differentiation, but normal humoral antibody titers and B-cell proliferation were inconsistent with this suspicion. Therefore, the results revealed an underlying T-cell defect and low levels of class-switched B-cells results from the lacking assistance from T-cells.

Keywords: B-cells; flow cytometry; T-cells


  • 1.

    Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 1998;336:577–80.Google Scholar

  • 2.

    Stray-Pederson A, Jonsson T, Heiberg A, Lindman CR, Widing E, Aaberger IS, et al. The impact o fan early truncating founder ATM mutation on immunoglobulins, specific antibodies, and lymphocyte population in ataxia-telangiectasia patients and their parents. Clin Exp Immunol 2004;137:179–86.CrossrefGoogle Scholar

  • 3.

    Chaudhary MW, Al-Baradie RS. Ataxia-telangiectasia: future prospects. Appl Clin Genet 2004;7:159–67.Google Scholar

  • 4.

    Bogdanova N, Cybulski C, Bermisheva M, Datsyuk I, Yamini P, Hillemanns P, et al. A nonsense mutation [E1978X] in the ATM gene is associated with breast cancer. Breast Cancer Res Treat 2008;118:207–11.Web of SciencePubMedGoogle Scholar

  • 5.

    Chessa L, Piane M, Magliozzi M, Torrente I, Savio C, Lulli P, et al. Founder effects for ATM gene mutations in Italian ataxia telangiectasia families. Ann Hum Gen 2009;73:532–9.CrossrefGoogle Scholar

  • 6.

    Birrell GW, Kneebone K, Nefedov M, Nefedova E, Jartsev MN, Mitsui M, et al. ATM mutations, haplotype analysis, and immunological status of Russian patients with ataxia-tel angiectasia. Hum Mutat 2005;25:593.CrossrefGoogle Scholar

  • 7.

    Podralska MJ, Stembalska A, Ślęzak R, Lewandowicz-Uszyńska A, Pietrucha B, Kołtan S, et al. Ten new ATM alterations in polish patients with ataxia-telangiectasia. Mol Genet Genomic Med 2014;2:504–11.PubMedCrossrefGoogle Scholar

  • 8.

    Bowen S, Wangsa D, Ried T, Livak F, Hodes RJ. Concurrent V(D)J recombination and DNA end instability increase interchromosomal trans-rearrangements in ATM-deficient thymocytes. Nucleic Acids Res 2013;41:4535–48.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 9.

    Hathcock KS, Bowen S, Livak F, Hodes RJ. ATM influences the efficiency of TCRβ rearrangement, subsequent TCRβ-dependent T cell development, and generation of the pre-selection TCRβ CDR3 repertoire. PLoS One 2013;8:e62188.Web of SciencePubMedCrossrefGoogle Scholar

  • 10.

    Matei IR, Gladdy RA, Nutter LM, Canty A, Guidos CJ, Danska JS. ATM deficiency disrupts Tcra locus integrity and the maturation of CD4+CD8+ thymocytes. Blood 2007;109:1887–96.Web of ScienceCrossrefPubMedGoogle Scholar

  • 11.

    Vacchio MS, Olaru A, Livak F, Hodes RJ. ATM deficiency impairs thymocyte maturation because of defective resolution of T cell receptor α locus coding and breaks. PNAS 2007;104:6323–8.CrossrefGoogle Scholar

  • 12.

    Driessen GJ, Ljspeert H, Weemaes CM, Haraldsson A, Trip M, Warris A, et al. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J Allergy Clin Immunol 2013;131:1367–75.Web of SciencePubMedCrossrefGoogle Scholar

  • 13.

    Isoda T, Takagi M, Piao J, Nakagama S, Sato M, Masuda K, et al. Process for immune defect and chromosomal translocation during early thymocyte development lacking ATM. Blood 2012;120:789–99.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 14.

    Lumsden JM, McCarty T, Petiniot LK, Shen R, Barlow C, Wynn TA, et al. Immunoglobulin class switch recombination is impaired in Atm-deficient mice. J Exp Med 2004;200:1111–21.PubMedCrossrefGoogle Scholar

  • 15.

    Boldt A, Borte S, Fricke S, Kentouche K, Emmrich F, Borte M, et al. Eight-color immunophenotyping of T-, B-, and NK-cell subpopulations for characterization of chronic immunodeficiencies. Cytometry B Clin Cytom 2014;86:191–206.CrossrefWeb of ScienceGoogle Scholar

  • 16.

    Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol 2003;112:973–80.CrossrefGoogle Scholar

  • 17.

    Bossowski A, Urban M, Stasiak-Barmuta A. Analysis of circulating T gamma/delta lymphocytes and CD16/56 cell populations in children and adolescents with Graves’ disease. Pediatr Res 2003;54:425–9.CrossrefGoogle Scholar

  • 18.

    Zheng R, Yang Q. The role of the γ δ T cell in allergic diseases. J Immunol Res 2014;2014:963484.PubMedGoogle Scholar

  • 19.

    Huck K, Feyen O, Ghosh S, Beltz K, Bellert S, Niehues T. Memory B-cells in healthy and antibody-deficient children. Clin Immunol 2009;131:50–9.CrossrefWeb of SciencePubMedGoogle Scholar

  • 20.

    Stray-Pedersen A, Borresen-Dale AL, Paus E, Lindman CR, Burgers T, Abrahamsen TG. Alpha fetoprotein is increasing with age in ataxia-telangiectasia. Eur J Paediatr Neurol 2007;11:375–80.CrossrefPubMedWeb of ScienceGoogle Scholar

  • 21.

    Giovannetti A, Mazzetta F, Caprini E, Aiuti A, Marziali M, Pierdominici M, et al. Skewed T-cell receptor repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia telangiectasia. Blood 2012;100:4082–9.Google Scholar

  • 22.

    Schubert R, Reichenbach J, Zielen S. Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin Exp Immunol 2002;129:125–32.PubMedCrossrefGoogle Scholar

  • 23.

    Jiang W, Lee BJ, Li C, Dubois RL, Gostissa M, Alt FW, et al. Aberrant TCRδ rearrangement underlies the T-cell lymphocytopenia and t(12;14) translocation associated with ATM deficiency. Blood 2015.23;125:2665–8.Web of ScienceCrossrefGoogle Scholar

  • 24.

    Carbonari M, Cherchi M, Paganelli R, Giannini G, Galli E, Gaetano C, et al. Relative increase of T cells expressing the gamma/delta rather than the alpha/beta receptor in ataxia-telangiectasia. N Engl J Med 1990;322:73–6.CrossrefGoogle Scholar

  • 25.

    Kraus M, Lev A, Simon AJ, Levran I, Nissenkorn A, Levi YB, et al. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol 2014:34:561–72.Google Scholar

  • 26.

    Hinz T, Allam A, Wesch D, Schindler D, Kabelitz D. Cell-surface expression of transrearranged Vgamma-cbeta T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. Br J Haematol 2000;109:201–10.PubMedCrossrefGoogle Scholar

  • 27.

    Bredemeyer AL, Sharma GG, Huang CY, Helmink BA, Walker LM, Khor KC, et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 2006;442:466–70.CrossrefGoogle Scholar

  • 28.

    Matei IR, Guidos CJ, Danska S. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006;209:142–58.CrossrefPubMedGoogle Scholar

  • 29.

    Willitzki A, Lorenz S, Hiemman R, Guttek K, Goihl A, Harting R, et al. Fully automated analysis of chemically induced γH2AX Foci in human peripheral blood mononuclear cells by indirect immunofluorescence. Cytometry 2013;83:1017–26.CrossrefGoogle Scholar

  • 30.

    Bredemeyer AL, Huang CY, Walker LM, Bassing CH, Sleckman BP. Aberrant V(D)J recombination in Ataxia Telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. J Immunol 2008;181:2620–5.PubMedWeb of ScienceCrossrefGoogle Scholar

  • 31.

    Reina-San Martin B, Chen HT, Nussenzweig A, Nussenzweig MC. ATM is required for efficient recombination between immunoglobulin switch region. J Exp Med 2004;200:1103–10.PubMedCrossrefGoogle Scholar

  • 32.

    Celiksoy MH, Topal E, Yıldıran A. Comparison of major lymphocyte subpopulations and recent thymic emigrants in patients with ataxia telangiectasia and age-matched healthy groups. Allergol Immunopathol (Madr) 2015;43:477–81.CrossrefPubMedGoogle Scholar

  • 33.

    Verhagen MM, Last JI, Hogervorst FB, Smeets DF, Roeleveld N, Verheijen F, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat 2012;33:561–71.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 34.

    O’Gorman RM. Role of flow cytometry in the diagnosis and monitoring of primary immunodeficiency disease. Clin Lab Med 2007;27:591–626.PubMedCrossrefWeb of ScienceGoogle Scholar

  • 35.

    Illoh OC. Current application of flow cytometry in the diagnosis of primary immunodeficiency disease. Arch Pathol Lab Med 2004;128:23–31.Google Scholar

  • 36.

    Sack U, Barnett D, Demirel GY, Fossat C, Fricke S, Kafassi N, et al. Accreditation of flow cytometry in Europe. Cytometry B Clin Cytom 2013;84:135–42.Web of SciencePubMedGoogle Scholar

About the article

Corresponding author: Dr. Alessandro De Stefano, Institute for Clinical Immunology, Johannisallee 30, 04103 Leipzig, Germany; and Laboratory of Clinical Biochemistry, Department of Laboratory Medicine, Tor Vergata University Hospital, Viale Oxford 81, Roma, Tel.: +39 340 6695671

aAlessandro De Stefano and Andreas Boldt contributed equally to this work.

Received: 2016-02-11

Accepted: 2016-06-17

Published Online: 2016-07-27

Published in Print: 2016-08-01

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in thestudy design; in the collection, analysis, and interpretationof data; in the writing of the report; or in the decision tosubmit the report for publication.

Citation Information: LaboratoriumsMedizin, Volume 40, Issue 4, Pages 255–261, ISSN (Online) 1439-0477, ISSN (Print) 0342-3026, DOI: https://doi.org/10.1515/labmed-2016-0018.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andreas Boldt, Michael Bitar, and Ulrich Sack
Clinics in Laboratory Medicine, 2017, Volume 37, Number 4, Page 895

Comments (0)

Please log in or register to comment.
Log in