Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Lebende Sprachen

Zeitschrift für interlinguale und interkulturelle Kommunikation

[Living Languages]

Ed. by Schmitt, Peter A. / Lee-Jahnke, Hannelore


CiteScore 2016: 0.04

SCImago Journal Rank (SJR) 2016: 0.111
Source Normalized Impact per Paper (SNIP) 2016: 0.003

Online
ISSN
1868-0267
See all formats and pricing
More options …
Volume 62, Issue 2

Issues

Machine learning: Implications for translator education

Gary Massey
  • Corresponding author
  • IUED Institute of Translation and Interpreting, ZHAW Zurich University of Applied Sciences, Theaterstraße 15 c, 8401 Winterthur, SwitzerlandZHAW Zurich University of Applied SciencesIUED Institute of Translation and InterpretingTheaterstraße 15c8401 WinterthurSwitzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maureen Ehrensberger-Dow
  • IUED Institute of Translation and Interpreting, ZHAW Zurich University of Applied Sciences, Theaterstraße 15 c, 8401 Winterthur, SwitzerlandZHAW Zurich University of Applied SciencesUED Institute of Translation and InterpretingTheaterstraße 15c8401 WinterthurSwitzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-13 | DOI: https://doi.org/10.1515/les-2017-0021

Abstract

Machines are learning fast, and human translators must keep pace by learning with, from and about them. Deep learning (DL) and neural machine translation (NMT) are set to change the reality of translation and the distributions of tasks. Although theoretical and practical courses on computer-aided and/or machine translation abound, less attention has been paid to DL and NMT in most translation programmes. The challenge for translation education is to give students the knowledge and toolkits to learn when and how to embrace the new technologies, and to exploit how and when the added value of human intuition, creativity and ethics can and should be deployed.

Keywords: Translator education; human translation; NMT; creativity; ethics

Paper based on a presentation delivered at the 2017 CIUTI Forum, Geneva, Switzerland, 12–13 January 2017.

Bibliography

  • Argenti, Paul A. (2016): Corporate communication (7th ed.). New York: McGraw-Hill Education.Google Scholar

  • Bayer-Hohenwarter, Gerrit (2010): “Comparing translational creativity scores of students and professionals: Flexible problem-solving and/or fluent routine behaviour?” Göpferich, Susanne / Alves, Fabio / Inger M. Mees (2010) (Eds.): New approaches in translation process research. Copenhagen: Samfundslitteratur Press, 83–111.Google Scholar

  • Bayer-Hohenwarter, Gerrit (2011): “Kreativität in populärwissenschaftlichen und instruktiven Texten im Vergleich: Kein Raum für Kreativität beim Übersetzen von instruktiven Texten?” trans-kom 4(1), 49–75.Google Scholar

  • Canfora, Carmen / Ottmann, Angelika (2015): “Risikomanagement für Übersetzungen.” trans-kom 8(2), 314–346. Google Scholar

  • Canon, Maria / Marifian, Elise (2013): “Job polarization leaves middle-skilled workers out in the cold.” The Regional Economist, Jan. 2013, 9–11. Retrieved June 9, 2017, from https://www.stlouisfed.org/~/media/Files/PDFs/publications/pub_assets/pdf/re/2013/a/employment.pdf

  • Cornelissen, Joep (2014): Corporate communication: A guide to theory and practice (4th ed.). London: Sage.Google Scholar

  • Dodds, Rebecca A. / Smith, Steven M. (1999): “Fixation.” Runco, Mark A. / Pritzker, Steven R. (Eds.): Encyclopedia of Creativity. San Diego: Academic Press, 725–728. Google Scholar

  • Dvorkin, Maximiliano (2016): “Jobs involving routine tasks aren't growing.” On the Economy, Federal Reserve Bank of St. Louis, Jan. 4. Retrieved June 9, 2017, from https://www.stlouisfed.org/on-the-economy/2016/january/jobs-involving-routine-tasks-arent-growing.

  • Ehrensberger-Dow, Maureen / Massey, Gary (2014a): “Cognitive ergonomic issues in professional translation.” Schwieter, John W. / Ferreira, Aline (2014) (Eds.): The development of translation competence: Theories and methodologies from psycholinguistics and cognitive science. Newcastle: Cambridge Scholars, 58–86.Google Scholar

  • Ehrensberger-Dow, Maureen / Massey, Gary (2014b): “Translators and machines: Working together.” Man vs. Machine? Vol. I. Proceedings of XXth World Congress of the International Federation of Translators, Berlin, Aug. 4–6, 2014, 199–207.Google Scholar

  • Ehrensberger-Dow, Maureen / Massey, Gary (2017): “Socio-technical issues in professional translation practice.” Translation Spaces (Special Issue) 6(1), 104–121.Google Scholar

  • Ericsson, K. Anders / Krampe, Ralph Th. / Tesch-Roemer, Clemens (1993): “The role of deliberate practice in the acquisition of expert performance.” Psychological Review 100, 363–406.Google Scholar

  • Global Newswire (2016) Aug. 30: “SYSTRAN announces the launch of its ‘Purely Neural MT’ engine, a revolution for the machine translation market.” Retrieved June 9, 2017, from https://globenewswire.com/news-release/2016/08/30/868116/10164884/en/SYSTRAN-announces-the-launch-of-its-Purely-Neural-MT-engine-a-revolution-for-the-machine-translation-market.html.

  • Göpferich, Susanne (2009): “Towards a model of translation competence and its acquisition: The longitudinal study ‘TransComp’.” Göpferich, Susanne / Jakobsen, Arnt L. / Mees, Inger M. (2009) (Eds.): Behind the mind: Methods, models and results in translation process research. Copenhagen: Samfundslitteratur Press, 11–37.Google Scholar

  • Göpferich, Susanne (2010). “The translation of instructive texts from a cognitive perspective: Translation novices and professionals compared.” Göpferich, Susanne / Alves, Fabio / Inger M. Mees (2010) (Eds.): New approaches in translation process research. Copenhagen: Samfundslitteratur Press, 5–52.Google Scholar

  • Göpferich, Susanne (2012): “Tracing strategic behaviour in translation processes: Translation novices, 4th-semester students and professional translators compared.” Hubscher-Davidson, Séverine / Borodo, Michal (2012) (Eds.), Global trends in translator and interpreter training. London: Continuum, 240–266.Google Scholar

  • Göpferich, Susanne (2013): “Translation competence: Explaining development and stagnation from a dynamic systems perspective.” Target 25(1), 61–76. Google Scholar

  • Göpferich, Susanne et al. (2011): “Exploring translation competence acquisition: Criteria of analysis put to the test.” O'Brien, Sharon (2011) (Ed.), Cognitive explorations of translation London: Continuum, 57–85.Google Scholar

  • Grace, Katja et al. (2017): “When will AI exceed human performance? Evidence from AI experts.” arXiv:1705.08807v1 [cs.AI]. Retrieved June 9, 2017, from https://arxiv.org/pdf/1705.08807.pdf.

  • Gross, Alexander (2003): “Teaching translation as a form of writing: Improving translator self-concept.” Baer, Brian J. / Koby, Geoffrey S. (2003) (Eds.): Beyond the ivory tower: Rethinking translation pedagogy. Amsterdam/Philadelphia: Benjamins, 83–93.Google Scholar

  • Guerberof Arenas, Ana (2013): “What do professional translators think about post-editing?” Journal of Specialised Translation 19, 75–95.Google Scholar

  • Hof, Robert D. (2016): “Deep learning.” MIT Technology Review. Retrieved June 9, 2017, from https://www.technologyreview.com/s/513696/deep-learning.

  • Holtzhausen, Derina / Zerfass, Ansgar (2015) (Eds.): The Routledge handbook of strategic communication. New York: Routledge.Google Scholar

  • Junczys-Dowmunt, Marcin / Dwojak, Tomasz / Hoang, Hieu (2016): “Is neural machine translation ready for deployment? A case study on 30 translation directions.” arXiv:1610.01108v3 [cs.CL]. Retrieved June 9, 2017, from https://de.scribd.com/document/345503523/Is-Neural-Machine-Translation-Ready-for-Deployment.

  • Juriené, Eglé (2017): “Translation in the European Parliament: Challenges and competences in translation.” Presentation at the 2017 CIUTI General Assembly, Winterthur, May 30–31.Google Scholar

  • Katan, David (2009): “Translation theory and professional practice: A global survey of the great divide.” Hermes – Journal of Language and Communication Studies 42, 111–153.Google Scholar

  • Katan, David (2011): “Occupation or profession: A survey of the translators’ world.” Sela-Sheffy, Rakefet / Shlesinger Miriam (2011) (Eds.): Profession, identity and status: Translators and interpreters as an occupational group. Amsterdam/Philadelphia: Benjamins, 65–88.Google Scholar

  • Katan, David (2016): “Translation at the cross-roads: Time for the transcreational turn?” Perspectives 24(3), 365–381.Google Scholar

  • Kiraly, Don (2012): “Growing a project-based translation pedagogy: A fractal perspective.” Meta 57(1), 82–95. Google Scholar

  • Kiraly, Don et al. (2016) (Eds.): Towards authentic experiential learning in translator education. Göttingen: V&R unipress/Mainz University Press. Google Scholar

  • Kurzweil, Ray (2005): “The singularity is near: when humans transcend biology.” New York: Viking.Google Scholar

  • Läubli, Samuel et al. (2013): “Assessing post-editing efficiency in a realistic translation environment.” O’Brien, Sharon / Simard, Michel / Specia, Lucia (Eds): Proceedings of the MT Summit XIV Workshop on Post-editing Technology and Practice, Nice, Sept. 2, 2013. Allschwil: European Association for Machine Translation, 83–91.Google Scholar

  • Marking, Marion (2016): “How big tech is using machine translation as an AI proxy.” Slator, Oct. 7. Retrieved 9 June 9, 2017, from https://slator.com/technology/big-tech-using-machine-translation-ai-proxy.

  • Massardo, Isabella / van der Meer, Jaap / Khalilov, Maxim (2016): Translation technology landscape report. September 2016. De Rijp: TAUS.Google Scholar

  • Massey, Gary / Brändli, Barbara (2016): “Collaborative feedback flows and how we can learn from them: Investigating a synergetic experience in translator education.” Kiraly, Don et al. (2016): 177–199.Google Scholar

  • Moorkens, Joss (2016): “A comparative evaluation of phrase-based statistical and neural machine translation.” Presentation at Translating and the Computer 38, London, Nov. 17–18.Google Scholar

  • Muñoz Martín, Ricardo (2014): “Situating translation expertise: A review with a sketch of a construct.” Schwieter, John W. / Ferreira, Aline (2014) (Eds.): The development of translation competence: Theories and methodologies from psycholinguistics and cognitive science. Newcastle: Cambridge Scholars, 2–56.Google Scholar

  • Nicaise, Laurent (2011): “On going beyond the literal: Translating metaphorical conceptualizations in financial discourse.” Meta 56(2), 407–423.CrossrefGoogle Scholar

  • O’Brien, Sharon (2012): “Translation as human-computer interaction.” Translation Spaces 1, 101–122.Google Scholar

  • Olohan, Maeve (2011): “Translators and translation technology: The dance of agency.” Translation Studies 4(3), 342–357. Google Scholar

  • Prassl, Friederike (2010): “Translators’ decision-making processes in research and knowledge integration.” Göpferich, Susanne / Alves, Fabio / Inger M. Mees (2010) (Eds.): New approaches in translation process research. Copenhagen: Samfundslitteratur Press, 57–81.Google Scholar

  • Prassl, Friederike (2011): “Übersetzerisches Rechercheverhalten auf dem Prüfstand. Empirische Befunde aus der Analyse von Konsultationshandlungen und ihre Auswirkung auf die Qualität des Zieltextes.” Trans-kom 4, 23–48.Google Scholar

  • Pym, Anthony (2011): “What technology does to translating.” Translation & Interpreting 3(1), 1–9.Google Scholar

  • Pym, Anthony (2015): “Translating as risk management.” Journal of Pragmatics 85, 67–80.Google Scholar

  • Risku, Hanna (2002): “Situatedness in translation studies.” Cognitive Systems Research 3, 523–533.CrossrefGoogle Scholar

  • Risku, Hanna (2010): “A cognitive scientific view on technical communication and translation: Do embodiment and situatedness really make a difference?” Target 22(1), 94–111.Google Scholar

  • Shreve, Gregory M. (2006): “The deliberate practice: Translation and expertise.” Journal of Translation Studies 9(1), 27–42.Google Scholar

  • Tabakowska, Elzbieta (2014): “Teaching translation: Can cognitive grammar be of any use?” Piotrowska, Maria / Tyupa, Sergiy (2014) (Eds.): Challenges in translation pedagogy (inTRAlinea Special Issue). Retrieved June 9, 2017, from http://www.intralinea.org/specials/article/teaching_translation_can_cognitive_grammar_be_of_any_use.

  • Tech Times (2016) Nov. 16: “Google Translate gets neural machine translation to deliver more natural answers.” Retrieved June 9, 2017, from http://www.techtimes.com/articles/186023/20161116/google-translate-gets-neural-machine-translation-to-deliver-more-natural-answers.htm.

  • The Economist (2017) May 27: “Why translators have the blues. A profession under pressure.” Retrieved June 9, 2017, from http://www.economist.com/news/books-and-arts/21722609-profession-under-pressure-why-translators-have-blues/.

  • Tirkkonen-Condit, Sonja / Laukkanen, Johanna (1996): “Evaluations – a key towards understanding the affective dimension of translational decision.” Meta 41, 45–59.Google Scholar

  • Vandaele, Sylvie / Lubin, Leslie (2005): “Approche cognitive de la traduction dans les langues de spécialité: vers une systématisation de la description de la conceptualisation métaphorique.” Meta 50(2), 415–431. CrossrefGoogle Scholar

  • Wu, Yonghui et al. (2016): “Google’s neural machine translation system: Bridging the gap between human and machine translation.” arXiv:1609.08144v2 [cs.CL]. Retrieved June 9, 2017, from https://arxiv.org/pdf/1609.08144.pdf.

About the article

Published Online: 2017-10-13

Published in Print: 2017-10-11


Citation Information: Lebende Sprachen, Volume 62, Issue 2, Pages 300–312, ISSN (Online) 1868-0267, ISSN (Print) 0023-9909, DOI: https://doi.org/10.1515/les-2017-0021.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in