Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Limnological Review

The Journal of Polish Limnological Society

4 Issues per year

Open Access
Online
ISSN
2300-7575
See all formats and pricing
More options …

The effect of glyphosate-based herbicide on aquatic organisms – a case study

Piotr Rzymski
  • Corresponding author
  • Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland,
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Klimaszyk
  • Department of Water Protection, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Kubacki
  • Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Poniedziałek
  • Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-22 | DOI: https://doi.org/10.2478/limre-2013-0024

Abstract

The non-selective, post-emergence herbicides based on glyphosate [N-(phosphonomethyl) glycine] are one of the most widely used pesticides in agriculture, urban areas and forestry. Although there has been documentation on the physical, chemical and toxicological properties of glyphosate, the aquatic toxicity of such formulations still requires assessment and evaluation. In the present study, we describe deliberate use of glyphosate-based herbicide in a bathing area of Lake Lednica (Wielkopolska, Poland) by unknown perpetrators in April, 2011. Glyphosate was detected using gas chromatography mass spectrometry (GC-MS) in the water samples collected from the bathing area at a mean concentration of 0.09 mg dm-3. Aboveground parts of emerged macrophytes (Phragmites australis and Typha latifolia) covering the investigated area were completely withered. Studies of benthic macroinvertebrates revealed no significant differences in taxa number between event (13 taxa) and control (14 taxa) sites although differences in abundance of particular taxa were observed. Significantly lower numbers of Chironomidae (by 41%), Oligochaeta (by 43%), Vivipariae (by 75%), Hirudinae (by 75%), Asellus aquaticus (by 77%), Gammarus pulex (by 38%) and Dreissena polymorpha (by 42%) were found at the glyphosate-treated site. Furthermore, compared to the control, chironomids (Chironomidae) exposed to glyphosate were represented by specimens smaller in length while A. aquaticus only showed large adults. The ranges of glyphosate concentration in the tissues of sampled macroinvertebrates and Phragmites australis organs were 7.3-10.2 μg kg-1 and 16.2-24.7 μg kg-1, respectively. Our study indicates that glyphosate-based herbicides may have adverse effects on aquatic organisms including macroinvertebrates, thus their use in (or nearby) surface waters should be subject to strict limitation.

Keywords : glyphosate; herbicides; macroinvertebrates; emergent macrophytes; Lake Lednica

  • Bonnet J.L., Bonnemoy F., Dusser M., Bohatier J., 2007, Assessment of the potential toxicity of herbicides and their degradation products to non target cells using two microorganisms, the bacteria Vibriof ischeri and the ciliate Tetrahymena pyriformis, Environ. Toxicol. 22(1): 78-91.CrossrefGoogle Scholar

  • Buhl K.J., Faerber N.L., 1989, Acute toxicity of selected herbicides and surfactants to larvae of the midge Chironomus riparius, Arch. Environ. Contam. Toxicol. 18(4): 530-536.CrossrefGoogle Scholar

  • Contardo-Jara V., Klingelmann E., Wiegand C., 2009, Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes, Environ. Pollut. 157(1): 57-63.CrossrefWeb of ScienceGoogle Scholar

  • Coupe R.H., Kalkhoff S.J., Capel P.D., Gregoire C., 2012, Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins, Pest. Manag. Sci. 68(1): 16-30.Web of ScienceCrossrefGoogle Scholar

  • Edge C.B., Gahl M.K., Thompson D.G., Houlahan J.E., 2013, Laboratory and field exposure of two species of juvenile amphibians to a glyphosate-based herbicide and Batrachochytrium dendrobatidis, Sci. Total Environ. 444: 145-152.Web of ScienceGoogle Scholar

  • Folmar L.C., Sanders H.L., Julin A.M., 1979, Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates, Arch. Environ. Contam. Toxicol. 8(3): 269-278.CrossrefGoogle Scholar

  • Giesy J.P., Dobson S., Solomon K.R., 2000, Ecotoxicological risk assessment for Roundup herbicide, Rev. Environ. Contam. Toxicol. 167: 35-120.Google Scholar

  • Glusczak L., Loro V.L., Pretto A., Moraes B.S., Raabe A., Duarte M.F., da Fonseca M.B., de Menezes C.C., Valladao D.M., 2011, Acute exposure to glyphosate herbicide affects oxidative parameters in piava (Leporinus obtusidens), Arch. Environ. Contam. Toxicol. 61(4): 624-630.CrossrefWeb of ScienceGoogle Scholar

  • Goldsborough L.G., Beck A.E., 1989, Rapid dissipation of glyphosate in small forest ponds, Arch. Environ. Contam. Toxicol. 18(4): 537-544.CrossrefGoogle Scholar

  • Jones D.K., Hammond J.I., Relyea R.A., 2010, Roundup and amphibians: the importance of concentration, application time, and stratification, Environ. Toxicol. Chem. 29(9): 2016-2025.Web of ScienceGoogle Scholar

  • Klimaszyk P., Heymann D., 2010, Vertical distribution of benthic macroinvertebrates in a meromictic lake (Lake Czarne, Drawieński National Park), Oceanol. Hydrobiol. Stud. 39(7): 99-106.CrossrefGoogle Scholar

  • Linz G.M., Bleier W.J., Overland J.D., Homan H.J., 1999, Response of invertebrates to glyphosate-induced habitat alterations in wetlands, Wetlands 19(1): 220-227.CrossrefGoogle Scholar

  • Linz G.M., Homar H.J., 2011, Use of glyphosate for managing invasive cattail (Typha spp.) to disperse blackbird (Icteridae) roosts, Crop Protect. 30(2): 98-104.Google Scholar

  • Modesto K.A., Martinez C.B., 2010, Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity, Chemosphere 81(6): 781-787.CrossrefWeb of ScienceGoogle Scholar

  • Perez G.P., Vera M.S., Miranda L., 2011, Effects of Herbicide Glyphosate and Glyphosate-Based Formulations on Aquatic Ecosystems, [in:] Kortekamp A. (ed.), Herbicides and Environment, InTech Europe, Rijeka: 343-368.Google Scholar

  • Peruzzo P.J., Porta A.A., Ronco A.E., 2008, Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina, Environ. Pollut. 156(1): 61-66.Web of ScienceCrossrefGoogle Scholar

  • Pieniążek D., Bukowska B., Duda W., 2003, Glifosat - nietoksyczny pestycyd? (Glyphosate - A non-toxic pesticide?) Med. Pracy 54(6): 579-583 (in Polish, English summary).Google Scholar

  • Relyea R. A., 2005, The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities, Ecol. Appl. 15(2): 618-627.CrossrefGoogle Scholar

  • Rueppel M.L., Brightwell B.B., Schaefer J., Marvel J.T., 1977, Metabolism and degradation of glyphosate in soil and water, J. Agric. Food Chem. 25(3): 517-528.CrossrefGoogle Scholar

  • Sandrini J.Z., Rola R.C., Lopes F.M., Buffon H.F., Freitas M.M., Martins Cde M., da Rosa C.E., 2013, Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies, Aquat. Toxicol. 130-131: 171-173.Web of ScienceGoogle Scholar

  • Schmidt H., Boas P., 2006, Accompanying experiments on weed control on public footways using the roller wiper ‘Rotofix’, Nachrichtenbl. Deut. Pflanzenschutzd. 58(2): 46-49.Google Scholar

  • Solomon K.R., Thompson D.G., 2003, Ecological risk assessment for aquatic organisms from over-water uses of glyphosate, J. Toxicol. Environ. Health B Crit. Rev. 6(3): 289-324.CrossrefGoogle Scholar

  • Steinrucken H.C., Amrhein N., 1980, The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase, Biochem. Biophys. Res. Comm. 94(4): 1207-1212.Google Scholar

  • Tsui M.T.K., Chu L.M., 2004, Comparative toxicity of glyphosate- based herbicides: aqueous and sediment porewater exposures, Arch. Environ. Contam. Toxicol. 46(3): 316-323. [USEPA] U.S. Environmental Protection Agency, 1993, R.E- .D. Facts: glyphosate, US EPA: Office of Pesticide Programs, Washington, p. 7. [USEPA] CrossrefGoogle Scholar

  • U.S. Environmental Protection Agency, 1986, Guidance for the reregistration of pesticide products containing glyphosate as the active ingredient, US EPA: Office of Pesticide Programs, Washington, p. 207.Google Scholar

  • Vera-Candioti J., Soloneski S., Larramendy M.L., 2013, Evaluation of the genotoxic and cytotoxic effects of glyphosate- based herbicides in the ten spotted live-bearer fish Cnesterodon decemmaculatus (Jenyns, 1842), Ecotoxicol. Environ. Saf. 89: 166-173.Google Scholar

  • Wang Y.S., Jaw C.G., Chen Y.L., 1994, Accumulation of 2,4- D and glyphosate in fish and water hyacinth, Water Air Soil Pollut. 74(3-4): 397-403. [WHO] World Health Organization, 1994, Glyphosate. Environmental health criteria 159, WHO: IPCS, Geneva, p. 177.Google Scholar

About the article

Published Online: 2014-01-22

Published in Print: 2013-12-01


Citation Information: Limnological Review, ISSN (Online) 2300-7575, DOI: https://doi.org/10.2478/limre-2013-0024.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
V. V. Kuz’mina, A. F. Tarleva, and V. A. Sheptitskii
Journal of Ichthyology, 2017, Volume 57, Number 5, Page 761
[2]
Jaime Rendon-von Osten and Ricardo Dzul-Caamal
International Journal of Environmental Research and Public Health, 2017, Volume 14, Number 6, Page 595
[3]
Emilie Lance, Julia Desprat, Bente Frost Holbech, Claudia Gérard, Myriam Bormans, Linda A. Lawton, Christine Edwards, and Claudia Wiegand
Aquatic Toxicology, 2016, Volume 177, Page 116

Comments (0)

Please log in or register to comment.
Log in