Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Linguistics Vanguard

A Multimodal Journal for the Language Sciences

Editor-in-Chief: Bergs, Alexander / Cohn, Abigail C. / Good, Jeff

CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.381
Source Normalized Impact per Paper (SNIP) 2018: 0.841

See all formats and pricing
More options …

Generalized Additive Mixed Models for intraspeaker variation

Meredith TammingaORCID iD: http://orcid.org/0000-0001-7374-2206 / Christopher AhernORCID iD: http://orcid.org/0000-0001-6596-2153 / Aaron Ecay
  • Department of Language and Linguistic Science, University of York, Heslington, York, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-27 | DOI: https://doi.org/10.1515/lingvan-2016-0030


Intraspeaker sociolinguistic variation is typically characterized by repetitiveness in what choices speakers make from moment to moment, but there are multiple possible sources of such repetitiveness. We distinguish two types of temporal clustering: sequential dependence and baseline deflection. We argue that because we have independent reasons from sociolinguistics and psycholinguistics to believe both types are at play in speech production, it is desirable to adopt quantitative models that can simultaneously estimate these distinct sources of temporal clustering. We propose the use of Generalized Additive Mixed Models (GAMMs) for this purpose and illustrate with a case study of DH-stopping in Philadelphia English sociolinguistic interviews. We advocate for the adoption of GAMMs to advance the use of naturalistic data for studying psycholinguistic questions about intraspeaker variation.

Keywords: priming; intraspeaker variation; speech style; psycholinguistics; sociolinguistics; PsychLingvar


  • Ahern, C. & M. Tamminga. 2015. A data-driven approach to stylistic identification. Paper presented at the Linguistics Society of America annual meeting.

  • Baayen, R., D. Davidson & D. Bates. 2008. Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59. 390–412.Web of ScienceCrossrefGoogle Scholar

  • Barr, D. J., R. Levy, C. Scheepers & H. J. Tily. 2013. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language 68. 255–278.CrossrefWeb of ScienceGoogle Scholar

  • Cameron, R. & N. Flores-Ferrán. 2004. Perseveration of subject expression across regional dialects of Spanish. Spanish in Context 1(1). 41–65.CrossrefGoogle Scholar

  • De Cat, C., E. Klepousniotou & R. H. Baayen. 2015. Representational deficit or processing effect? An electrophysiological study of noun-noun compound processing by very advanced L2 speakers of English. Frontiers in Psychology 5.Web of ScienceGoogle Scholar

  • Feldman, L. B., P. Milin, K. W. Cho, F. M. del Prado Martín, and P. A. O’Connor. 2015. Must analysis of meaning follow analysis of form? A time course analysis. Frontiers in Human Neuroscience 9.Google Scholar

  • Goldinger, S. D. 1996. Auditory lexical decision. Language and Cognitive Processes 11(6). 559–567.CrossrefGoogle Scholar

  • Gries, S. T. 2005. Syntactic priming: a corpus-based approach. Journal of Psycholinguistic Research 34(4). 365–399.PubMedCrossrefGoogle Scholar

  • Hastie, T. J. & R. J. Tibshirani. 1990. Generalized additive models, Volume 43. CRC Press.

  • Labov, W. 2001a. The anatomy of style-shifting. In P. Eckert & J. R. Rickford (eds.), Style and Sociolinguistic Variation, chapter 5, 85–108. Cambridge University Press.

  • Labov, W. 2001b. Principles of linguistic change, Vol. 2. Social factors. Oxford: Blackwell.Google Scholar

  • Labov, W. & I. Rosenfelder. 2011. The Philadelphia Neighborhood Corpus of LING 560 studies, 1972–2010. With support of NSF contract 921643.

  • Nixon, J. S, J. van Rij, P. Mok, R. H. Baayen & Y. Chen. 2016. The temporal dynamics of perceptual uncertainty: eye movement evidence from Cantonese segment and tone perception. Journal of Memory and Language 90. 103–125.Web of ScienceCrossrefGoogle Scholar

  • Paolillo, J. C. 2002. Analyzing linguistic variation: Statistical models and methods. Center for the Study of Language and Inf.

  • Pham, H. & H. R. Baayen. 2013. Semantic relations and compound transparency: A regression study in CARIN theory. Psihologija 46. 455–478.Web of ScienceCrossrefGoogle Scholar

  • Pickering, M. J. & V. S. Ferreira. 2008. Structural priming: A critical review. Psycholinguistic Bulletin 134(3). 427–459.Google Scholar

  • R Core Team. 2015. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar

  • Rosenfelder, I., J. Fruehwald, K. Evanini, S. Seyfarth, K. Gorman, H. Prichard & J. Yuan. 2014. FAVE (Forced Alignment and Vowel Extraction) program suite v1.2.2.

  • Ruppert, D., M. P. Wand & R. J. Carroll. 2003. Semiparametric regression, Number 12. Cambridge University Press.

  • Sankoff, D. & S. Laberge. 1978. Statistical dependence among successive occurrences of a variable in discourse. In D. Sankoff (ed.), Linguistic variation: models and methods, chapter 8, 119–126. Academic Press.

  • Szmrecsanyi, B. 2006. Morphosyntactic persistence in spoken English: A corpus study at the intersection of variationist sociolinguistics, psycholinguistics, and discourse analysis. Mouton de Gruyter.

  • Tamminga, M. 2014. Persistence in the production of linguistic variation. PhD thesis, University of Pennsylvania.Google Scholar

  • Tamminga, M., L. MacKenzie & D. Embick. 2016. The dynamics of variation in individuals. Linguistic Variation 16(2). Forthcoming.Web of ScienceGoogle Scholar

  • Tremblay, A. & A. J. Newman. 2015. Modeling nonlinear relationships in ERP data using mixed-effects regression with R examples. Psychophysiology 52. 124–139.Web of ScienceCrossrefGoogle Scholar

  • Wieling, M., S. Montemagni, J. Nerbonne & R. H. Baayen. 2014. Lexical differences between Tuscan dialects and standard Italian: Accounting for geographic and sociodemographic variation using generalized additive mixed modeling. Language 90(3). 669–692.CrossrefGoogle Scholar

  • Wood, S. 2006. Generalized additive models: An introduction with R. CRC Press.

  • Wood, S. 2016. Mixed GAM computation vehicle with GCV/AIC/REML Smoothness Estimation.

  • Zhang, X. D., X. Liny & D. Zhang. 1999. Inference in generalized additive mixed models using smoothing splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(2). 381–400.CrossrefGoogle Scholar

About the article

Received: 2016-04-20

Accepted: 2016-06-28

Published Online: 2016-08-27

Published in Print: 2016-09-22

Citation Information: Linguistics Vanguard, Volume 2, Issue s1, ISSN (Online) 2199-174X, DOI: https://doi.org/10.1515/lingvan-2016-0030.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Meredith Tamminga
Frontiers in Artificial Intelligence, 2019, Volume 2
Meredith Tamminga, Laurel MacKenzie, and David Embick
Linguistic Variation, 2016, Volume 16, Number 2, Page 300

Comments (0)

Please log in or register to comment.
Log in