Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Linguistics Vanguard

A Multimodal Journal for the Language Sciences

Editor-in-Chief: Bergs, Alexander / Cohn, Abigail C. / Good, Jeff

1 Issue per year

Online
ISSN
2199-174X
See all formats and pricing
More options …

Semantic values as latent parameters: Testing a fixed threshold hypothesis for cardinal readings of few & many

Anthea Schöller / Michael FrankeORCID iD: http://orcid.org/0000-0001-9670-8510
Published Online: 2017-08-24 | DOI: https://doi.org/10.1515/lingvan-2016-0072

Abstract

Certain uses of vague quantifiers few and many intuitively compare a true quantity to a priori expectations about that quantity. A concrete proposal for the truth conditions of such readings stipulates a contextually-stable threshold on a contextually-variable representation of a priori expectations (Clark, H. H. 1991. Words, the world, and their possibilities. In Lockhead G. R. & Pomerantz J. R. (eds.), The perception of structure: Essays in honor of Wendell R Garner, 263–277. Washington, DC: American Psychological Association; Fernando, T. & H. Kamp. 1996. Expecting many. In Galloway T. & Spence J. (eds.), Proceedings of SALT VI, 53–68. Ithaca, NY: Cornell University.) The main goal of this paper is to introduce data-driven computational modeling as a means to implement and test complex semantic theories of this kind, which may be hard to assess based on solitary introspection of meaning intuitions. Based on an empirical measure of a priori expectations, we use Bayesian inference to estimate likely values of the latent threshold parameters given empirical data from production and comprehension tasks. We demonstrate how posterior inference and statistical model comparison can help assess the plausibility of the fixed threshold hypothesis.

Keywords: few; many; computational modeling; experimental data; context-dependence

References

  • Chemla, E. & R. Singh. 2014. Remarks on the experimental turn in the study of scalar implicature (part I & II). Language and Linguistics Compass 8(9). 373–386, 387–399.CrossrefGoogle Scholar

  • Clark, H. H. 1991. Words, the world, and their possibilities. In G. R. Lockhead & J. R. Pomerantz (eds.), The perception of structure: Essays in honor of Wendell R. Garner, 263–277. Washington, DC: American Psychological Association .Google Scholar

  • Cohen, A. 2001. Relative readings of Many, Often, and generics. Natural Language Semantics 9. 41–67.CrossrefGoogle Scholar

  • Eckardt, R. 1999. Focus and nominal quantifiers. In P. Bosch & R. van der Sand (eds.), Focus, 166–187. Cambridge: Cambridge University Press.Google Scholar

  • Fernando, T. & H. Kamp. 1996. Expecting many. In T. Galloway & J. Spence (eds.), Proceedings of SALT VI, 53–68. Ithaca, NY: Cornell University.Google Scholar

  • Franke, M. 2012. On scales, salience & referential language use. In M. Aloni, F. Roelofsen, & K. Schulz (eds.), Amsterdam colloquium 2011, Lecture Notes in Computer Science, 311–320. Springer: Berlin, Heidelberg.Google Scholar

  • Franke, M. 2016. Task types, link functions & probabilistic modeling in experimental pragmatics. In F. Salfner & U. Sauerland (eds.), Proceedings of trends in experimental pragmatics, 56–63.Google Scholar

  • Franke, M., F. Dablander, A. Schöller, E. D. Bennett, J. Degen, M. H. Tessler, J. Kao & N.D. Goodman. 2016. What does the crowd believe? A hierarchical approach to estimating subjective beliefs from empirical data. In Proceedings of CogSci 38. 2669–2674.Google Scholar

  • Franke, M. & G. Jäger. 2016. Probabilistic pragmatics, or why Bayes’ rule is probably important for pragmatics. Zeitschrift für Sprachwissenschaft 3(1). 3–44.Web of ScienceGoogle Scholar

  • Gelman, A. & D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7(4). 457–472.CrossrefGoogle Scholar

  • Goodman, N. D. & M. C. Frank. 2016. Pragmatic language interpretation as probabilistic inference. Trends in Cognitive Sciences 20(11). 818–829.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Griffiths, T. L. & J. B Tenenbaum. 2006. Optimal predictions in everyday cognition. Psychological Science 17(9). 767–773.PubMedCrossrefGoogle Scholar

  • Hackl, M. 2009. On the grammar and processing of proportional quantifiers. Most versus more than half. Natural Language Semantics 17(1). 63–98.Google Scholar

  • Hörmann, H. 1983. Was tun die Wörter miteinander im Satz? oder, Wieviele sind einige, mehrere und ein paar?. Göttingen: Verlag für Psychologie .Google Scholar

  • Kao, J. T., J. Y. Wu, L. Bergen & N. D Goodman. 2014. Nonliteral understanding of number words. Proceedings of the National Academy of Sciences 111(33). 12002–12007.CrossrefWeb of ScienceGoogle Scholar

  • Kennedy, C. 2007. Vagueness and grammar: The semantics of relative and absolute gradable adjectives. Linguistics and Philosophy 30(1). 1–45.Web of ScienceCrossrefGoogle Scholar

  • Kennedy, C. & L McNally. 2005. Scale structure, degree modification, and the semantics of gradable predicates. Language 81(2). 345–381.CrossrefGoogle Scholar

  • Kruschke, J. 2014. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Amsterdam: Academic Press .Google Scholar

  • Lassiter, D. & N. D. Goodman. 2015. Adjectival vagueness in a Bayesian model of interpretation. Synthese . 1–36.Web of ScienceGoogle Scholar

  • Moxey, L. M. & A. J. Sanford. 2000. Communicating quantities: A review of psycholinguistic evidence of how expressions determine perspectives. Applied Cognitive Psychology 14(3). 237–255.CrossrefGoogle Scholar

  • Partee, B. 1989. Many quantifiers. In J. Powers & K. de Jong (eds.), 5th Eastern States Conference on Linguistics (ESCOL), 383–402. Columbus: Ohio State University .Google Scholar

  • Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing.Google Scholar

  • Plummer, M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9(3). 523–539.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Qing, C. & M. Franke. 2014. Gradable adjectives, vagueness, and optimal language use: A speaker-oriented model. Linguistic society of America SALT 24. 23–41.Google Scholar

  • Quine, W. V. O. 1951. Two dogmas of empiricism. The Philosophical Review 60. 20–43.CrossrefGoogle Scholar

  • Romero, M. 2015. The conservativity of many. In Proceedings of the 20th Amsterdam Colloquium. 20–29.Google Scholar

  • Solt, S. 2009. The semantics of adjectives of quantity. The City University of New York, Ph. D. thesis.Google Scholar

  • Solt, S. 2011. Vagueness in quantity: Two case studies from a linguistic perspective. Understanding vagueness. Logical, philosophical and linguistic perspectives, 157–174. College Publications Understanding vagueness. Logical, philosophical and linguistic perspectives.Google Scholar

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin & A. Van Der Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4). 583–639.CrossrefGoogle Scholar

  • Vehtari, A. & J. Ojanen. 2012. A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys 6. 142–228.CrossrefGoogle Scholar

  • Westerståhl, D. 1985. Logical constants in quantifier languages. Linguistics and Philosophy 8(4). 387–413.CrossrefGoogle Scholar

About the article

Received: 2016-08-29

Accepted: 2017-03-27

Published Online: 2017-08-24


Citation Information: Linguistics Vanguard, Volume 3, Issue 1, 20160072, ISSN (Online) 2199-174X, DOI: https://doi.org/10.1515/lingvan-2016-0072.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in