Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Linguistics Vanguard

A Multimodal Journal for the Language Sciences

Editor-in-Chief: Bergs, Alexander / Cohn, Abigail C. / Good, Jeff

1 Issue per year

Online
ISSN
2199-174X
See all formats and pricing
More options …

Too many Americans are trapped in fear, violence and poverty”: a psychology-informed sentiment analysis of campaign speeches from the 2016 US Presidential Election

Thomas Hoffmann
  • Corresponding author
  • Catholic University of Eichstätt-Ingolstadt, English and American Studies, Universitätsallee 1, Eichstätt 85072, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-13 | DOI: https://doi.org/10.1515/lingvan-2017-0008

Abstract

Most automatic sentiment analyses of texts tend to only employ a simple positive-negative polarity to classify emotions. In this paper, I illustrate a more fine-grained automatic sentiment analysis [Jockers, Matthew. 2016. Introduction to the Syuzhet package. https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html (accessed 07 March 2017).; Mohammad, Saif M. & Peter D. Turney. 2013. Crowd sourcing a word-emotion association lexicon. Computational Intelligence 29(3). 436–465.] that is based on a classification of human emotions that has been put forward by psychological research [Plutchik, Robert. 1994. The psychology and biology of emotion. New York, NY: HarperCollins College Publishers.]. The advantages of this approach are illustrated by a sample study that analyses the emotional sentiment of the campaign speeches of the two main candidates of the 2016 US presidential election.

Keywords: corpus linguistics; political speeches; sentiment analysis

References

  • Bayagich, Megan, Laura Cohen, Lauren Farfel, Andrew Krowitz, Emily Kuchman, Sarah Lindenberg, Natalie Sochacki, Hannah Suh & Stuart Soroka. 2016. Exploring the tone of the 2016 Campaign. http://cpsblog.isr.umich.edu/?p=1884 (accessed 07 March 2017).

  • Becker-Carus, Christian & Mike Wendt. 2017. Emotionen. In Christian Becker-Carus & Mike Wendt (eds.), Allgemeine Psychologie: Eine Einführung, 539–568. Berlin et al: Springer.Google Scholar

  • Bortz, Jürgen, Gustav A. Lienert & Klaus Boehnke. 1990. Verteilungsfreie Methoden in der Biostatistik. Berlin et al: Springer.Google Scholar

  • Calvo, Rafael A. & Sunghwan M. Kim. 2013. Emotions in text: Dimensional and categorical models. Computational Intelligence 29(3). 527–543.Google Scholar

  • Crockett, Zachary. 2016. What I learned reading 4,000 Trump and Clinton tweets. Source: http://www.vox.com/2016/11/7/13550796/clinton-trump-twitter (accessed 07 March 2017).

  • Ekman, Paul 1992. An argument for basic emotions. Cognition and Emotion 6(3). 169–200.Google Scholar

  • Ekman, Paul. 2005. Emotion in the human face. Oxford: Oxford University Press.Google Scholar

  • Ekman, Paul & Wallace V. Friesen. 1969. The repertoire of nonverbal behavior: Categories, origins, usage, and coding. Semiotica 1. 49–98.Google Scholar

  • Ekman, Paul & Wallace V. Friesen. 1971. Constants across cultures in the face and emotion. Journal of Personality and Social Psychology 17. 124–129.PubMedGoogle Scholar

  • Francom, Jerid. 2015. Web scraping with ‘rvest’ in R. Source: http://francojc.github.io/web-scraping-with-rvest/ (accessed 07 March 2017).

  • Gendron, Maria, Debi Roberson, Jacoba Marietta van der Vyver & Lisa Feldman Barrett. 2014. Cultural relativity in perceiving emotion from vocalizations. Psychological Science 25. 911–920.PubMedGoogle Scholar

  • Gries, St. Th. 2004. HCFA 3.2 ‑ A Program for Hierarchical Configural Frequency Analysis for R for Windows. http://www.linguistics.ucsb.edu/faculty/stgries/research (accessed 17 November 2014).

  • Gries, St. Th. 2009. Statistics for linguistics with R: A practical introduction. Berlin: Mouton de Gruyter.Google Scholar

  • Hoffmann, Thomas. 2017. Construction Grammars. In Barbara Dancygier (ed.), The Cambridge handbook of cognitive linguistics, 310–329. Cambridge: Cambridge University Press.Google Scholar

  • Jockers, Matthew. 2015. Some thoughts on Annie’s thoughts … about Syuzhet. http://www.matthewjockers.net/2015/03/04/some-thoughts-on-annies-thoughts-about-syuzhet/ (accessed 17 July 2017).

  • Jockers, Matthew. 2016. Introduction to the Syuzhet package. https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html (accessed 07 March 2017).

  • Kennedy, Alistair & Diana Inkpen. 2006. Sentiment classification of movie reviews using contextual valence shifters. Computational Intelligence 22. 110–125.Google Scholar

  • Mohammad, Saif M. & Peter D. Turney. 2010. Emotions evoked by common words and phrases: Using Mechanical Turk to create an emotion lexicon. In Proceedings of the NAACL-HLT 2010 workshop on computational approaches to analysis and generation of emotion in text, 26–34. June 2010, LA, California. http://aclweb.org/anthology/W10-02 (accessed 26 September 2017).

  • Mohammad, Saif M. & Peter D. Turney. 2013. Crowd sourcing a word-emotion association lexicon. Computational Intelligence 29(3). 436–465.Google Scholar

  • Nissim, Malvina & Viviana Patti. 2017. Semantic aspects in sentiment analysis. In Federico Alberto Pozzi, Elisabetta Fersini, Enza Messina & Bing Liu (eds.), Sentiment analysis in social networks, 31–48. Amsterdam et al.: Elsevier.Google Scholar

  • Oaks, Michael P. 1998. Statistics for corpus linguistics (Edinburgh Textbooks in Empirical Linguistics). Edinburgh: Edinburgh University Press.Google Scholar

  • Patterson, Thomas E. 2016. News coverage of the 2016 general election: How the press failed the voters. https://shorensteincenter.org/news-coverage-2016-general-election/ (accessed 07 March 2017).

  • Plutchik, Robert. 1980. A general psychoevolutionary theory of emotion. Volume 1: Of theories of emotion. New York, NY: Academic Press.Google Scholar

  • Plutchik, Robert. 1994. The psychology and biology of emotion. New York, NY: HarperCollins College Publishers.Google Scholar

  • Plutchik, Robert. 2001. The nature of emotions. American Scientist 89. 344–350.Google Scholar

  • Pozzi, Federico Alberto, Elisabetta Fersini, Enza Messina & Bing Liu. 2017. Challenges of sentiment analysis in social networks: An overview. In Federico Alberto Pozzi, Elisabetta Fersini, Enza Messina & Bing Liu (eds.), Sentiment analysis in social networks, 1–11. Amsterdam et al.: Elsevier.Google Scholar

  • R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.Google Scholar

  • Rinker, Tyler. 2016. Sentimentr v0.4.0. https://www.rdocumentation.org/packages/sentimentr/versions/0.4.0 (accessed 17 July 2017).

  • Russell, James A. 1994. Is there universal recognition of emotion from facial expression? A review of the cross-cultural studies. Psychological Bulletin 115(1). 102–141.PubMedGoogle Scholar

  • Sauter, Disa A., Frank Eisner, Paul Ekman & Sophie K. Scott. 2010. Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the United States of America 107(6). 2408–2412.PubMedGoogle Scholar

  • Sauter, Disa A., Frank Eisner, Paul Ekman & Sophie K. Scott. 2015. Emotional vocalizations are recognized across cultures regardless of the valence of distractors. Psychological Sciences 26(3). 354–356.Google Scholar

  • Schrepp, Martin. 2006. The use of configural frequency analysis for explorative data analysis. British Journal of Mathematical and Statistical Psychology 59(1). 59–73.Google Scholar

  • Schweinberger, Martin. 2016. A sociolinguistic analysis of emotives in Irish English. Poster presented at the Annual Meeting of the Society for Text & Discourse 2016, Kassel, 18–20 July 2016.Google Scholar

  • Swafford, Annie. 2015. Problems with the syuzhet package. https://annieswafford.wordpress.com/2015/03/02/syuzhet/ (accessed 17 July 2017).

  • Young, Lori & Stuart Soroka. 2012. Affective news: The automated coding of sentiment in political texts. Political Communication 29. 205–231.Google Scholar

About the article

Received: 2017-03-08

Accepted: 2017-10-21

Published Online: 2018-01-13


Citation Information: Linguistics Vanguard, Volume 4, Issue 1, 20170008, ISSN (Online) 2199-174X, DOI: https://doi.org/10.1515/lingvan-2017-0008.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in