Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Linguistics Vanguard

A Multimodal Journal for the Language Sciences

Editor-in-Chief: Bergs, Alexander / Cohn, Abigail C. / Good, Jeff

See all formats and pricing
More options …

Predicting semi-regular patterns in morphologically complex words

Eric Rosen
Published Online: 2018-03-23 | DOI: https://doi.org/10.1515/lingvan-2017-0037


We expect generative models of language to correctly predict surface forms from underlying forms, but morphologically complex words, especially compounds, can exhibit idiosyncratic outputs, which require an extra lexical listing. This results in (a) a poorer Minimum Description Length of our model and (b) failure of a grammar to capture patterning among exceptions. To solve an instance of this problem, we examine pitch-accent patterns of 2-mora-2-mora Japanese Yamato (native) noun-noun compounds, hitherto considered semi-predictable but which show gradient tendencies among constituents to trigger a particular accent pattern. In the framework of Gradient Symbolic Computation (Smolensky, Paul & Matthew Goldrick. 2015. Gradient symbolic computation. LSA Summer Institute Workshop. Chicago.), a type of harmonic grammar which allows partially activated feature values and weighted constraints, such gradient patterns can be captured through the additive combination of coalescing features on each conjunct, which results in a pitch accent when the summed activations surpass a threshold determined by the grammar. The ability of this framework to completely predict these semi-regular patterns holds promise that it can also explain similar kinds of patterns in other languages.

Keywords: Gradient Symbolic Computation; pitch-accent; lexicalization; Minimum Description Length; predictability


  • Buchwald, Adam, Oren Schwartz, Amanda Seidl & Paul Smolensky. 2002. Recoverability optimality theory: discourse anaphora in a bidirectional framework. In Johan Jos, Mark Ellen Foster & Colin Matheson (eds.), Proceedings of the sixth workshop on the semantics and pragmatics of dialogue (EDILOG 2002), 4–6 September, 37–44. Edinburgh, UK: The University of Edinburgh.Google Scholar

  • Cho, Pyeong Whan, Matthew Goldrick & Paul Smolensky. 2017. Incremental parsing in a continuous dynamical system: Sentence processing in Gradient Symbolic Computation. Linguistics Vanguard, 3. doi: https://doi.org/10.1515/lingvan-2016-0105.Web of Science

  • Coetzee, Andries & Joe Pater. 2008. Weighted constraints and gradient restrictions on place co-occurrence in Muna and Arabic. NLLT 26(2). 289–337.Google Scholar

  • De Lacy, Paul. 1999. A correspondence theory of morpheme order. In Peter Norquest, Jason D. Haugen & Sonya Bird (eds.), WCCFL (West Coast Conference in Formal Linguistics) XVIII. Arizona: Coyote Working Papers in Linguistics, 27–45. Rutgers Optimality Archive 338.Google Scholar

  • Goldsmith, John. 2011. The evaluation metric in generative grammar. Paper presented at the 50th anniversary celebration for the MIT Department of Linguistics, December 2011.Google Scholar

  • Itô, Junko & Armin Mester. 2016. Unaccentedness in Japanese. Linguistic Inquiry 47. 471–526.Web of ScienceCrossrefGoogle Scholar

  • Kubozono, Haruo & Yayoi Fujiura. 2004. Morpheme-dependent nature of compound accent in Japanese: An analysis of “short” compounds. On-in Kenkyuu [phonological studies] 7. 9–16.Google Scholar

  • Pater, Joe. 1999. Austronesian nasal substitution and other NC effects. In Harry van der Hulst, René Kager & Wim Zonneveld (eds.), The prosody morphology interface, 310–343. Cambridge, UK: Cambridge University Press.Google Scholar

  • Prince, Alan & Paul Smolensky. 1993. Optimality theory. New Brunswick, NJ: Ms. Rutgers University. Published in 2004 by Blackwell Publishing Ltd. Oxford, UK.Google Scholar

  • Rosen, Eric. 2016. Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through harmonic grammar. In E. Clem, V. Dawson, A. Shen, A. H. Skilton, G. Bacon, A. Cheng & E. H. Maier (eds.), Proceedings of BLS 42, 235–249. Berkeley, California: Berkeley Linguistic Society.Google Scholar

  • Smolensky, Paul & Matthew Goldrick. 2015. Gradient symbolic computation. LSA Summer Institute Workshop. Chicago.Google Scholar

  • Smolensky, Paul & Matthew Goldrick. 2016. Gradient symbolic representations in grammar: The case of French Liaison. Ms. Johns Hopkins University and Northwestern University. Available as ROA 1286 at the Rutgers Optimality Archive: http://roa.rutgers.edu.

  • Zukoff, Sam. 2016. The Mirror Alignment Principle: Morpheme ordering at the morphosyntax-phonology interface. MIT Generals Paper. January 26.Google Scholar

About the article

Received: 2017-08-26

Accepted: 2018-02-21

Published Online: 2018-03-23

Citation Information: Linguistics Vanguard, Volume 4, Issue 1, 20170037, ISSN (Online) 2199-174X, DOI: https://doi.org/10.1515/lingvan-2017-0037.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in