Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Linguistics Vanguard

A Multimodal Journal for the Language Sciences

Editor-in-Chief: Bergs, Alexander / Cohn, Abigail C. / Good, Jeff

CiteScore 2018: 0.95

SCImago Journal Rank (SJR) 2018: 0.381
Source Normalized Impact per Paper (SNIP) 2018: 0.841

See all formats and pricing
More options …

Is there phonological feature priming?

Karthik Durvasula
  • Corresponding author
  • Michigan State University, Department of Linguistics & Germanic, Slavic, Asian and African Languages, East Lansing, MI, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alicia Parrish
Published Online: 2019-02-26 | DOI: https://doi.org/10.1515/lingvan-2018-0041


While there is robust evidence of segment priming, particularly in some real word contexts, there is little to no evidence bearing on the issue of priming of subsegmental features, particularly phonological features. In this article, we present two lexical decision task experiments to show that there are no consistent priming effects attributable to phonological place of articulation features. Given that there is clear evidence of segment priming, but no clear evidence of priming due to other phonological representations, we suggest that it is doubtful that priming is a good tool to study phonological representations, particularly those that are not consciously accessible.

This article offers supplementary material which is provided at the end of the article.

Keywords: Phonological features; priming; lexical decision task


  • Avery, P. & K. Rice. 1989. Segment structure and coronal underspecification. Phonology 6(2). 179–200. Retrieved from http://www.jstor.org/stable/4419997.Crossref

  • Barr, D. J., R. Levy, C. Scheepers, & H. J. Tily. 2013. Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language 68(3). 1–26. doi: 10.1016/j.jml.2012.11.001.Web of ScienceGoogle Scholar

  • Bates, D., M. Mächler, B. Bolker & S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1). 1–48. doi: 10.18637/jss.v067.i01.Google Scholar

  • Blumstein, S. E. 2016. Phonetic categories and phonological features: Evidence from the cognitive neuroscience of language. In A. Lahiri & S. Kotzor (eds.), The speech processing lexicon: Neurocognitive and behavioural approaches, 4–20. Berlin, Boston: De Gruyter. doi: https://doi.org/10.1515/9783110422658.

  • Bock, J. 1986. Syntactic persistence in language production. Cognitive Psychology 18(3). 355–387. Retrieved from http://www.sciencedirect.com/science/article/pii/0010028586900046, doi: https://doi.org/10.1016/0010-0285(86)90004-6.Crossref

  • Boersma, P. & D. Weenink. 2016. Praat: doing phonetics by computer [Computer program]. Version 6.0.19, retrieved 13 June 2016 from http://www.praat.org/.

  • Branigan, H. & M. Pickering. 2016. An experimental approach to linguistic representation. Behavioral and Brain Sciences 40. 1–73. doi: 10.1017/S0140525X16002028.Web of ScienceGoogle Scholar

  • Brysbaert, M. & B. New. 2009. Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods 41(4). 977–990. Retrieved from http://subtlexus.lexique.org/moteur2/index.php (Online; accessed October-2014).CrossrefWeb of Science

  • Dufour, S. 2008. Phonological priming in auditory word recognition: When both controlled and automatic processes are responsible for the effects. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 62(1). 33–41.CrossrefWeb of ScienceGoogle Scholar

  • Eulitz, C. & A. Lahiri. 2004. Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. Journal of Cognitive Neuroscience 16(4). 577–583. Retrieved from https://doi.org/10.1162/089892904323057308, doi: 10.1162/089892904323057308.Crossref

  • Goldinger, S. D. 1998. Signal detection comparisons of phonemic and phonetic priming: The flexible-bias problem. Perception and Psychophysics 60(6). 952–965.CrossrefGoogle Scholar

  • Goldinger, S. D., P. A. Luce & D. B. Pisoni. 1989. Priming lexical neighbors of spoken words: Effects of competition and inhibition. Journal of Memory and Language 28(5). 501–518.PubMedCrossrefGoogle Scholar

  • Goldinger, S. D., P. A. Luce, D. B. Pisoni & J. K. Marcario. 1992. Form-based priming in spoken word recognition: The roles of competition and bias. Journal of Experimental Psychology: Learning, Memory and Cognition 18(6). 1211–1238.Google Scholar

  • Halle, M. 2013. From memory to speech and back. Papers on phonetics and phonology 1954 – 2002. Berlin, Boston: De Gruyter Mouton.Google Scholar

  • Hestvik, A. & K. Durvasula. 2016. Neurobiological evidence for voicing underspecification in English. Brain and Language 152. 28–43. Retrieved from http://www.sciencedirect.com/science/article/pii/S0093934X15300274, doi: https://doi.org/10.1016/j.bandl.2015.10.007.PubMedCrossref

  • Hoenig, J. M. & D. M. Heisey. 2001. The abuse of power. The American Statistician 55(1). 19–24. Retrieved from https://doi.org/10.1198/000313001300339897, doi: 10.1198/000313001300339897.Crossref

  • Kazanina, N., J. S. Bowers & W. Idsardi. 2017. Phonemes: Lexical access and beyond. Psychonomic Bulletin and Review 25. 560–585. Retrieved from https://doi.org/10.3758/s13423-017-1362-0, doi: 10.3758/s13423-017-1362-0.

  • Kenstowicz, M. 1994. Phonology in generative grammar. Cambridge MA: Blackwell.Google Scholar

  • Kirby, J. & M. Sonderegger. 2018. Mixed-effects design analysis for experimental phonetics. Journal of Phonetics 70. 70–85. Retrieved from http://www.sciencedirect.com/science/article/pii/S0095447017301390, doi: https://doi.org/10.1016/j.wocn.2018.05.005.Web of ScienceCrossref

  • Kuznetsova, A., P. B. Brockhoff & R. H. B. Christensen. 2017. lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software 82(13). 1– 26. doi: 10.18637/jss.v082.i13.Google Scholar

  • Luce, P. A. & D. B. Pisoni. 1998. Recognizing spoken words: The neighborhood activation model. Ear and Hearing 19(1). 1–36.PubMedCrossrefGoogle Scholar

  • Luketala, K., C. Carello, D. Schankweiler & I. Y. Liberman. 1995. Phonological awareness in illiterates: Observations from Serbo-Croatian. Applied Psycholinguistics 16. 463–487.CrossrefGoogle Scholar

  • Mielke, J. 2008.The emergence of distinctive features. Oxford: Oxford University Press.Google Scholar

  • Monahan, P. J. 2018. Phonological knowledge and speech comprehension. Annual Review of Linguistics 4(1). 21–47. Retrieved from https://doi.org/10.1146/annurev-linguistics-011817-045537, doi: 10.1146/annurev-linguistics-011817-045537.CrossrefWeb of Science

  • Moreton, E. 2002. Structural constraints in the perception of English stop-sonorant clusters. Cognition 84. 55–71.PubMedCrossrefGoogle Scholar

  • Neely, J. H. 1977. Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited-capacity attention. Journal of Experimental Psychology: General 106(3). 226–254.CrossrefGoogle Scholar

  • Okada, K., W. Matchin & G. Hickok. 2018. Phonological feature repetition suppression in the left inferior frontal gyrus. Journal of Cognitive Neuroscience 30(10). 1549–1557. Retrieved from https://doi.org/10.1162/jocn_a_01287 (PMID: 29877763), doi: 10.1162/jocn_a_01287.CrossrefPubMedWeb of Science

  • Peirce, J. 2007. PsychoPy – Psychophysics software in Python. Journal of Neuroscience Methods 162. 8–13.CrossrefPubMedWeb of ScienceGoogle Scholar

  • R Development Core Team. 2014. R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org (ISBN 3-900051-07-0).

  • Radeau, M., J. Morais & A. Dewier. 1989. Phonological priming in spoken word recognition: Task effects. Memory and Cognition 17(5). 525–535.CrossrefGoogle Scholar

  • Radeau, M., J. Morais & J. Segui. 1995. Phonological priming between monosyllabic spoken words. Journal of Experimental Psychology: Human Perception and Performance 21(6). 1297–1311.Google Scholar

  • Raftery, A. E. 1995. Bayesian model selection in social research. Sociological Methodology 25. 111–163. Retrieved from http://www.jstor.org/ stable/271063.Crossref

  • Read, C., Z. Yun-Fei, N. Hong-Yin & D. Bao-Qing. 1986. The ability to manipulate speech sounds depends on knowing alphabetic writing. Cognition 24. 31–44.CrossrefPubMedGoogle Scholar

  • Schiller, N. O., A. Costa & A. Colomé. 2002. Phonological encoding of single words: In search of the lost syllable. In Papers in laboratory phonology VII. Berlin: Mouton de Gruyter.Google Scholar

  • Schvaneveldt, R. & D. E. Meyer. 1973. Retrieval and comparison processes in semantic memory.Attention and performance IV. New York: Academic Press.Google Scholar

  • Slowiaczek, L. M. & D. B. Pisoni. 1986. Effects of phonological similarity on priming in auditory lexical decision. Memory and Cognition 14(3). 230–237.CrossrefGoogle Scholar

  • Slowiaczek, L. M., H. C. Nusbaum & D. B. Pisoni. 1987. Phonological priming in auditory word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition 13(1). 64–75.PubMedGoogle Scholar

  • Taler, V., P. G. Aaron, L. G. Steinmetz & D. B. Pisoni. 2010. Lexical neighborhood density effects on spoken word recognition and production in healthy aging. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 65B(5). 551–560. doi: 10.1093/geronb/gbq039.Web of ScienceCrossrefGoogle Scholar

  • Tulving, E. & D. L. Schacter. 1990. Priming and human memory systems. Science 247(4940). 301–306.PubMedCrossrefGoogle Scholar

  • Umeda, N. 1977. Consonant duration in American English. The Journal of the Acoustical Society of America 61(3). 846–858.CrossrefGoogle Scholar

  • Vaden, K., H. Halpin & G. Hickok. 2009. Irvine phonotactic online dictionary, version 1.4. [data file]. Available from http://www.iphod.com.

  • Vitevitch, M. S. & M. S. Sommers. 2003. The facilitative influence of phonological similarity and neighborhood frequency in speech production in younger and older adults. Memory and Cognition 31(4). 491–504.CrossrefGoogle Scholar

  • Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems ofp values. Psychonomic Bulletin and Review 14(5). 779–804. Retrieved from https://doi.org/10.3758/BF03194105, doi: 10.3758/BF03194105.Crossref

About the article

aBoth authors have contributed equally to this paper and share first authorship.

Received: 2017-12-06

Accepted: 2018-11-08

Published Online: 2019-02-26

Citation Information: Linguistics Vanguard, Volume 5, Issue 1, 20180041, ISSN (Online) 2199-174X, DOI: https://doi.org/10.1515/lingvan-2018-0041.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in