Jump to ContentJump to Main Navigation
Show Summary Details

Latvian Journal of Chemistry

The Journal of Riga Technical University

2 Issues per year

Open Access
Online
ISSN
0868-8249
See all formats and pricing

Studies of Archaeological Bone Structure by Different Analytical Methods

V. Rudovica
  • Department of Analytical Chemistry, University of Latvia
/ A. Viksna
  • Department of Analytical Chemistry, University of Latvia
/ J. Katkevich
  • Department of Analytical Chemistry, University of Latvia
/ G. Zarina
  • Institute of the History of Latvia, University of Latvia
/ J. Bitenieks
  • Institute of Polymer Materials, Riga Technical University
/ J. Zicans
  • Institute of Polymer Materials, Riga Technical University
/ I. Leito
  • Institute of Chemistry, University of Tartu
/ S. Vahur
  • Institute of Chemistry, University of Tartu
Published Online: 2012-01-31 | DOI: https://doi.org/10.2478/v10161-011-0072-6

Studies of Archaeological Bone Structure by Different Analytical Methods

Preservation of the structure of archaeological bones was studied by examining their physicochemical properties. The mechanical properties, and conductivity porosity, crystallinity and content of organic material were evaluated. These parameters were established to be suitable for characterizing changes in the course of time of archaeological bone structure. The obtained results revealed that the elastic modulus and conductivity changes depended on the porosity of bones; and the increase in crystallinity was correlated with a loss of organic matter.

Arheologisko Kaulu Struktūras Pētījums Ar Dažādām Analītiskām Metodēm

Kaulaudi ir heterogēns kompozītmateriāls, kurš veidots no organiskās un neorganiskās matricas. Izmaiņas arheologisko kaulu struktūrā notiek savstarpējā iedarbībā ar augsnes apbedījuma vietu, vidi un tajā mītošajiem mikroorganismiem. Arheologisko kaulu fizikālķīmiskās īpašības novērtētas ar dažādām analītiskām metodēm, nosakot kaulaudu mehāniskās īpašības, porozitāti, kristāliskumu un organiskās matricas zudumus.

Keywords: archaeological bones; diagenesis; mechanical properties; crystallinity; conductivity; porosity

  • Berna, F., Matthews, A., Weiner. S. (2004). Solubilities of Bone Mineral from Archaeological Sites: The Recrystallization Window. J. Archaeol. Sci., 31, 867-882. [Crossref]

  • Hedges, R. E. M. (2002). Bone Diagenesis: An Overview of Process. Archaeometry, 44 (3), 319-328. [Crossref]

  • Hedges, R. E. M., Millard, A. R. (1995). Bones and groundwater towards the modelling of diagenetic processes. J. Archaeol. Sci., 22, 155-165. [Crossref]

  • Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N., Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J. Archaeol. Sci., 31, 721-739. [Crossref]

  • Olesiak, S. E., Sponheimer, M., Eberle, J. J., Oyen, M. L., Ferguson, V. L. (2010). Nanomechanical Properties of Modern and Fossil Bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 25-32. [Web of Science]

  • Zagorskis, F. (1987). Zvejnieku akmens laikmeta kapulauks. Rīga: Zinātne.

  • Spirgis, R. (2006). Arheologiskie izrakumi Rīgas Sv. Pētera baznīcas kapsētā. Arheologu pētījumi Latvijā 2004. un 2005. gadā., 45-54.

  • Katakam, S., Krishna, D. S. R., Kumar, T. S. S. (2003). Microwave Processing of Functionally Graded Bioactive Materials. Mater. Lett., 57 (18), 2716-2721.

  • Person, A., Bocherens, H., Saliége, J. F., Paris, F., Zeitoun, V., Gérard, M. (1995). Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis. J. Archaeol. Sci., 22, 211-221. [Crossref]

  • Ou-Yang, H., Paschalis, E. P., Mayo, W. E., Boskey, A. L., Mendelsohn, R. (2001). Infrared Microscopic Imaging of Bone: Spatial Distribution of CO32-. JBMR, 16 (5), 893-900.

  • Chadefaux, C., Anne-Solenn, L. H., Bellot-Gurlet, L., Reiche, I. (2009). Curve - Fitting Micro - ATR - FTIR Studies of the Amide I and II Bands of Type I Collagen in Archaeological Bone Materials. e - PS, 6, 129-137.

  • Stathopoulou, E. T., Psycharis, V., Chryssikos, G. D., Gionis, V., Theodorou, G. (2008). Bone Diagenesis: New Data from Infrared Spectroscopy and X-ray Diffraction. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 168-174. [Web of Science]

  • Abdel-Maksoud, G. (2010). Comparison Between the Properties of "Accelerated - Aged" Bones and Archaeological Bones. MAA, 10 (1), 89-112.

  • Wu, J. S. S., Lin, H. C., Hung, J. P., Chen, J. H. (2006). Effects of Bone Mineral Fraction and Volume Fraction on the Mechanical Properties of Cortical Bone. J. Med. Biol. Eng., 26 (1), 1-7.

  • Martin, R. B., Sharkey, N. A., Burr, D. B. (1998). Skeletal Tissue Mechanics. New York: Springer-Verlag.

  • Rho, J. Y., Kuhn-Spearing, L., Zioupos, P. (1998). Mechanical Properties and the Hierarchical Structure of Bone. Med. Eng. Phys., 20, 92-102. [PubMed] [Crossref]

  • Ličina, V., Gajovič, A., Moguš-Milankovič, A., Djerdj, I., Tomašič, N., Su, D. (2008). Correlation Between the Microstructure and the Electrical Properties of ZrTiO4 Ceramics. J. Am. Ceram. Soc., 91, 178-186.

  • Zhang, X., Koon, G. N., Anil, K. (2008). Monitoring acid-demineralization of human dentine by electrochemical impedance spectroscopy (EIS). J. Dent., 36, 1005-1012. [Web of Science]

About the article


Published Online: 2012-01-31

Published in Print: 2011-01-01


Citation Information: Latvian Journal of Chemistry, ISSN (Print) 0868-8249, DOI: https://doi.org/10.2478/v10161-011-0072-6. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in