Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Adam Mickiewicz University

3 Issues per year

CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805

Open Access
See all formats and pricing
More options …

Easily-accessible digital palaeontological databases-a new perspective for the storage of palaeontological information

Paweł Wolniewicz
  • Geological Institute, Adam Mickiewicz University, Maków Polnych 16, PL-61-606 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-12-24 | DOI: https://doi.org/10.2478/v10118-009-0002-1

Easily-accessible digital palaeontological databases-a new perspective for the storage of palaeontological information

Techniques that allow to render diverse types of palaeontological data as publicly available internet resources are described. In order to develop an easily accessible digital palaeontological database, three steps should be followed: (1) digitization of the studied specimens, (2) acquisition of morphometric data, and (3) contribution of the data to open and searchable geoinformatic (palaeontological) databases. Digital data should be submitted to internet databases that allow a user to fetch various types of information from dispersed sources (semantic web services).

Keywords: digitization; morphometrics; palaeoinformatics; palaeontological collections; palaeontological databases; semantic web

  • Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A. & Visaggi, C. C., 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97-100.Web of ScienceGoogle Scholar

  • Berendsohn, W. G., 1995. The concept of "potential taxa" in databases. Taxon 44, 207-212.CrossrefGoogle Scholar

  • Chandrasekaran, B., Johnson, T. & Benjamins, V., 1999. Ontologies: what are they? Why do we need them? IEEE Intelligent Systems and their Applications 14, 20-26.Google Scholar

  • Choh, S.-J. & Milliken, K. L., 2004. Virtual carbonate thin section using PDF: new method for interactive visualization and archiving. Carbonates and Evaporites 19, 87-92.CrossrefGoogle Scholar

  • De Keyser, T. L., 1999. Digital scanning of thin sections and peels. Journal of Sedimentary Research 69, 962-964.CrossrefGoogle Scholar

  • Di, L. & McDonald, K., 1999. Next generation data and information systems for earth sciences research. Proceedings of the First International Symposium on Digital Earth. Science Press, Beijing, China, 92-101.Google Scholar

  • Gahegan, M., Luo, J., Weaver, S. D., Pike, W. & Banchuen, T., 2009. Connecting GEON: Making sense of the myriad resources, researchers and concepts that comprise a geoscience cyberinfrastructure. Computers & Geosciences 35, 836-854.Web of ScienceCrossrefGoogle Scholar

  • Gruber, T. R., 1993. A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199-220.CrossrefGoogle Scholar

  • Huber, R. & Klump, J., 2009. Charting taxonomic knowledge through ontologies and ranking algorithms. Computers & Geosciences 35, 862-868.CrossrefWeb of ScienceGoogle Scholar

  • Krell, F.-T., 2000. Impact factors aren't relevant to taxonomy. Nature 405, 507-508.Google Scholar

  • Lamoureux, F. & Bollmann, J., 2004. Image acquisition. [In:] P. Francus (ed.): Image analysis, sediments and paleoenvironments. Springer Science+Business Media, Dordrecht, 11-34.Google Scholar

  • Lutz, M., 2007. Ontology-based descriptions for semantic discovery and composition of geoprocessing services. Geoinformatica 11, 1-36.CrossrefWeb of ScienceGoogle Scholar

  • Lyons, P. D., Rioux, M. & Patterson, T., 2000. Application of a three-dimensional color laser scanner to paleontology: an interactive model of a juvenile Tylosaurus sp. basisphenoid-basioccipital. Palaeontologia Electronica 3 (2), 16 pp.Google Scholar

  • MacLeod, N. & Guralnick, R., 2000. Paleoinformatics. [In:] R. H. Lane, F. F. Steininger, R. L. Kaesler, W. Zeigler & J. Lipps (eds): Fossils and the future: Paleontology in the 21st century. Senckenberg Museum, Frankfurt, 31-36.Google Scholar

  • Molineux, A., Scott, R. W., Ketcham, R. A. & Maisano, J. A., 2007. Rudist taxonomy using X-ray computed tomography. Palaeontologia Electronica 10, 6 pp.Google Scholar

  • Pirard, E., 2004. Image measurements. [In:] P. Francus (ed.): Image analysis, sediments and paleoenvironments. Springer Science+Business Media, Dordrecht, 59-86.Google Scholar

  • Rees, P. M., Alroy, J., Scotese, C., Memon, A., Rowley, D. B., Parrish, J. T., Weishampel, D. B, Platon, E., O'Leary, M. A. & Chandler, M. A., 2007. Phanerozoic earth and life: the Paleointegration Project. Abstracts, GSA Geoinformatics Division, San Diego (May 2007), Paper No. 5-9.Google Scholar

  • Reitsma, F., Laxton, J., Ballard, S., Kuhn, W. & Abdelmoty, A., 2009. Semantics, ontologies and eScience for the geosciences. Computers & Geosciences 35, 706-709.CrossrefWeb of ScienceGoogle Scholar

  • Ruban, D. A. & Van Loon, A. J., 2008. Possible pitfalls in the procedure for paleobiodiversity-dynamics analysis. Geologos 14, 37-50.Google Scholar

  • Smith, N. E. & Strait, S. G., 2008. PaleoView3D: from specimen to online digital model. Palaeontologia Electronica 11, 17 pp.Google Scholar

  • Stearn, C. W., 1999. Easy access to doubtful taxonomic decisions. Palaeontologia Electronica 2, 4 pp.Google Scholar

  • Theodor, J. M. & Furr, R. S., 2009. High dynamic range imaging as applied to paleontological specimen photography. Palaeontologia Electronica 12, 30 pp.Google Scholar

  • Valdecasas, A. G., Castroviejo, S. & Marcus, L. F., 2000. Reliance on the citation index undermines the study of biodiversity. Nature 403, 698.Google Scholar

  • White, J. V., Kirkland, B. L. & Gournay, J. P., 1998. Quantitative porosity determination of thin sections using digitized images. Journal of Sedimentary Research 68, 220-222.CrossrefGoogle Scholar

  • Wilhite, R., 2003. Digitizing large fossil skeletal elements for three-dimensional applications. Paleontologica Electronica 5, 10 pp.Google Scholar

  • Wolniewicz, P., 2009. Late Famennian stromatoporoids from Dębnik Anticline, southern Poland. Acta Palaeontologica Polonica 54, 337-350.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2009-12-24

Published in Print: 2009-12-01

Citation Information: Geologos, Volume 15, Issue 3-4, Pages 181–188, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/v10118-009-0002-1.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in