Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Adam Mickiewicz University

3 Issues per year

CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805

Open Access
See all formats and pricing
More options …
Volume 18, Issue 1

Sedimentary environment and palaeogeography of the ?Palaeocene-Middle Eocene Kashkan Formation, Zagros fold-thrust belt, SW Iran

Bizhan Yeganeh
  • Department of Geology, Faculty of Science, Tarbiat Moalem University, Tehran, Islamic Republic of Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sadat Feiznia / A. van Loon
Published Online: 2012-04-06 | DOI: https://doi.org/10.2478/v10118-012-0002-4

Sedimentary environment and palaeogeography of the ?Palaeocene-Middle Eocene Kashkan Formation, Zagros fold-thrust belt, SW Iran

The Kashkan Formation (?Palaeocene to Middle Eocene) in the Zagros fold-thrust belt, SW Iran, which is intercalated between to marine limestone formations, consists of conglomerates, sandstones and siltstones. The sedimentology and the palaeogeography of the Kashkan Formation had not received any attention thus far, but have now been studied in seven sections, situated in the province of Lorestan. The sediments form twelve lithofacies, three ichnosubfacies and seven architectural elements, which are described, depicted and analysed. The analysis leads to the conclusion that most sediments accumulated in a low-sinuosity, low-gradient braided-river system (characterised by mainly unidirectional palaeocurrent directions, and by sheetfloods), that occasionally showed meandering characteristics (represented by overbank deposits and large bars). The deposits of this system closely resemble those of the South Saskatchewan River in Canada, which is considered as the classical example of a sand-bed braided river. The river flowed roughly from North to South, as deduced by palaeocurrent indicators such as imbrication and large-to medium-scale trough cross-stratification (direction measured in the trough axes). This current direction is supported by the southward to south-westward thinning of the formation and by the diminishing average grain size in the same direction. The trace fossils in the Kashban Formation fit all in the Skoyenia ichnofacies, which has here three ichnosubfacies which allow a more detailed palaeoenvironmental reconstruction, indicating that the braided stream passed into the low-energy shoreface zone of a tidally-influenced sea.

Keywords: Kashkan Formation; Zagros fold-thrust belt; trace fossils; facies architecture; braided river; shoreface; Palaeocene; Eocene; Iran

  • Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 1-20.Google Scholar

  • Allen, J. R. L., 1964. Studies in fluviatile sedimentation: six cyclothems from the Lower Old Red Sandstone, Anglo-Welsh Basin. Sedimentology 3, 163-198.CrossrefGoogle Scholar

  • Allen, J. R. L., 1983. Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology 33, 237-293.CrossrefGoogle Scholar

  • Allen, J. R. L., 1984. Parallel lamination developed from upper stage plane beds: a model based on the larger coherent structures of the turbulent boundary layer. Sedimentary Geology 39, 227-242.CrossrefGoogle Scholar

  • Allen, J. R. L., 1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sedimentary Geology 46, 67-75.Google Scholar

  • Anderson, B. G. & Droser, M. L., 2000. Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphy framework: an example from the Upper Cretaceous US western interior. Sedimentology 45, 379-396.Google Scholar

  • Bhattacharayya, A. & Chakraborty, C., 2000. Analysis of Sedimentary Successions, a Field Manual. A. A. Balkema Publishers, Dordrecht, 408 pp.Google Scholar

  • Bridge, J. S., 1985. Paleochannel patterns inferred from alluvial deposits: a critical evaluation. Journal of Sedimentary Petrology 55, 579-589.Google Scholar

  • Bridge, J. S., 1993. Description and interpretation of fluvial deposits: a critical perspective. Sedimentology 40, 801-810.CrossrefGoogle Scholar

  • Bridge, J. S., 2006. Fluvial facies models: recent developments. In: Posamentier, H. & Walker, R. G. (Eds), Facies Models Revisited. SEPM Special Publication, 84, p. 85-170.Google Scholar

  • Brierley, G. J., 1996. Channel morphology and element assemblages: a constructivist approach to facies modelling. In: Carling, P. A. & Dawson, M. R. (Eds), Advances in Fluvial Dynamics and Stratigraphy. John Wiley & Sons, Chichester, pp. 263-298.Google Scholar

  • Cant, D. J., 1978. Bedforms and bar types in the South Saskatchewan River. Journal of Sedimentary Petrology 48, 1321-1330.Google Scholar

  • Cant, D. J. & Walker, R. G., 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25, 625-648.CrossrefGoogle Scholar

  • Capuzzo, N. & Wetzel, A., 2004. Facies and basin architecture of the Late Carboniferous Salvan-Dorénaz continental basin (Western Alps, Switzerland/France). Sedimentology 51, 675-697.CrossrefGoogle Scholar

  • Collinson, J. D., 1996. Alluvial sediments. In: Reading, H. G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy (3rd ed.). Blackwell Publishing, Oxford, p. 37-82.Google Scholar

  • Collinson, J. D. & Thompson, D. B., 1989. Sedimentary Structures (2nd ed.). Unwin Hyman, London, 207 pp.Google Scholar

  • Crimes, T. P. & Droser, M. L., 1992. Trace fossils and bioturbation: the other fossil record. Annual Review of Ecological Systems 23, 339-360.Google Scholar

  • D'Alessandro, A., Ekdale, A. A. & Picard, M. D., 1987. Trace fossils in fluvial deposits of the Duchesne River Formation (Eocene), Uinta Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 61, 285-301.CrossrefGoogle Scholar

  • Doe, T. W. & Dott, R. H. Jr., 1980. Genetic significance of deformed cross-bedding-with examples from the Navajo and Weber sandstones of Utah. Journal of Sedimentary Petrology 50, 793-812.Google Scholar

  • Eriksson, P. G., Condie, K. C., Tirsgaard, H., Muller W. U., Altermann, W., Miall, A. D., Aspler, L. B., Catuneanu, O. & Chiarenzelli, J. R., 1998. Precambrian clastic sedimentation systems. Sedimentary Geology 120, 5-53.Google Scholar

  • Falcon, N. L., 1967. The geology of northeast margin of Arabian basement shield. Advances in Science (Sept. 1967), 31-42.Google Scholar

  • Frey, R. W., Howard, J. D. & Pryor, W. A., 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 23, 199-229.CrossrefGoogle Scholar

  • Frey, R. W. & Pemberton, S. G., 1984. Trace fossil facies models. In: Walker R. G. (Ed.), Facies Models. Geoscience Canada Reprint Series 1, p. 189-207.Google Scholar

  • Friend, P. F., 1983. Towards the field classification of alluvial architecture or sequence. In: Collinson J. D., Lewin, J. (Eds), Modern and Ancient Fluvial Systems. Special Publication International Association of Sedimentologists, p. 345-354.Google Scholar

  • Fürsich, F. T., 1974. On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreite-bearing, U-shaped trace fossils. Journal of Paleontology 48, 952-962.Google Scholar

  • Ghazi, S. & Mountney, N.P, 2009. Facies and architectural element analysis of a meandering fluvial succession: the Permian Warchha Sandstone, Salt Range, Pakistan. Sedimentary Geology 221, 99-126.Google Scholar

  • Ghent, E. G. & Henderson, R. A., 1966. Petrology, sedimentation and palaeontology of Middle Miocene graded sandstones and mudstone, Kaiti beach, Gisborne. Transactions of the Royal Society of New Zealand (Geology) 4, 147-169.Google Scholar

  • Harms, J. C., Southard, J. B. & Walker, R. G., 1982. Structures and Sequences in Clastic Rocks. SEPM Short Course Notes 9, 851 pp.Google Scholar

  • Hasiotis, S. T., 2006. Continental Trace Fossils. SEPM Short Course Notes 51, 134 pp.Google Scholar

  • Hein, F. J. & Walker, R. G., 1977. Bar evolution and development of stratification in the gravelly, braided Kicking Horse River, British Coloumbia. Canadian Journal of Earth Sciences 14, 562-570.CrossrefGoogle Scholar

  • Hjellbakk, A., 1997. Facies and fluvial architecture of a high-energy braided river: the Upper Proterozoic Seglodden Member, Varanger Peninsula, northern Norway. Sedimentary Geology 114, 131-141.Google Scholar

  • Jackson II, R. G., 1981. Sedimentology of muddy fine-grained channel deposits in meandering streams of the American Middle West. Journal of Sedimentary Petrology 51, 1169-1192.Google Scholar

  • James, G. A. & Wynd, J. G., 1965. Stratigraphic nomenclature of Iranian oil consortium agreement area. American Association of Petroleum Geologists Bulletin 49, 2182-2245.Google Scholar

  • Jo, H. R. & Chough, S. K., 2001. Architectural analysis of fluvial sequences in the northwestern part of Kyongsang Basin (Early Cretaceous), SE Korea. Sedimentary Geology 144, 307-334.Google Scholar

  • Jones, S. J., Frostick, L. E. & Astin, T. R., 2001. Braided stream and flood plain architecture: the Rio Vero Formation, Spanish Pyrenees. Sedimentary Geology 139, 229-260.Google Scholar

  • Leturmy, P. & Robin, C. (Eds), 2010. Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic-Cenozoic. Geological Society, London, Special Publication 330, 376 pp.Google Scholar

  • López-Gómez, J., Martin-Chivelet, J. M. & Palma, R., 2009. Architecture and development of the alluvial sediments of the Upper Jurassic Tordillo Formation in the Cañada Ancha Valley, northern Neuquén Basin, Argentina. Sedimentary Geology 219, 180-195.Google Scholar

  • Mack, G. H. & James, W. C., 1992. Paleosols for Sedimentologists. Geological Society of America Short Course Notes, 127 pp.Google Scholar

  • Maizels, J., 1993. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sedimentary Geology 85, 299-325.CrossrefGoogle Scholar

  • Mazumder, R. & Sarkar, S., 2004. Sedimentary history of the Palaeoproterozoic Dhanjori Formation, Singhbhum, India and its implications. Precambrian Research 130, 267-287.Google Scholar

  • Meyer, R., Krause, F. & Braman, D., 1998. Unconformities within a progradational estuarine system: the Upper Santonian Virgelle Member, Milk River Formation, Writing-on-Stone Provincial Park, Alberta, Canada. In: Alexander, C. R. & Henry, V. J. (Eds), Tidalites: Processes and Products. SEPM Special Publication 61, p. 129-142.Google Scholar

  • Miall, A. D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22, 261-308.CrossrefGoogle Scholar

  • Miall, A. D., 1988. Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies. American Association of Petroleum Geologists Bulletin 72, 682-697.Google Scholar

  • Miall, A. D., 1994. Reconstructing fluvial macrofrom architecture from two-dimensional outcrops; examples from the Castlegate Sandstone, Book Cliffs, Utah. Journal of Sedimentary Research 64, 146-158.Google Scholar

  • Miall, A. D., 1996. The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer- Verlag, Berlin, 582 pp.Google Scholar

  • Miall, A. D., 1997. A review of the braided-river depositional environment. Earth-Science Reviews 13, 1-62.Google Scholar

  • Motiei, H., 1993. Stratigraphy of Zagros. Treatise on the Geology of Iran. Geological Survey of Iran, Teheran, 536 pp. [in Persian].Google Scholar

  • Murris, R. J., 1978. Hydrocarbon habitat of the Middle East. Shell Internationale Petroleum Maatschappij B. V., Exploration and Production, 179.Google Scholar

  • Murris, R. J., 1980. The Middle East: stratigraphic evolution and oil habitat. American Association of Petroleum Geologists Bulletin 64, 597-618.Google Scholar

  • Narbonne, G. M., 1981. Stratigraphy, reef development and trace fossils of the Upper Silurian Douro Formation in the southeastern Canadian Arctic Island. Ph.D. Thesis University of Ottawa, 259 pp.Google Scholar

  • Olsen, H., 1988. The architecture of a sandy braided-meandering river system: an example from the lower Triassic Solling Formation (M. Buntsandstein) in W-Germany. Geologische Rundschau 77, 797-814.Google Scholar

  • Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D. & Sinclair, I. K., 2001. Ichnology and sedimentology of shallow to marginal marine systems. Geological Association of Canada Short Course Notes 15, 343 pp.Google Scholar

  • Pisarska-Jamrozy, M., Machowiak, K. & Krzyszkowski, D., 2010. Sedimentation style of a Pleistocene kame terrace from the western Sudety Mountains, S Poland. Geologos 16, 101-110.Google Scholar

  • Reineck, H. E. & Singh, I. B., 1980. Depositional sedimentary environments (with reference to terrigenous clastics) (2nd ed.). Springer-Verlag, Heidelberg, 549 pp.Google Scholar

  • Retallack, G. J., 1997. A Colour Guide to Paleosols. John Wiley & Sons, Chichester, 175 pp.Google Scholar

  • Rust, B. R., 1978. A classification of alluvial channel systems. In: Miall, A. D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir 5, p. 187-198.Google Scholar

  • Salamon, T. & Zielinski, T., 2010. Unusual development of sandur sedimentary succession, an example from the Pleistocene of S Poland. Geologos 16, 83-99.Google Scholar

  • Scholle, P. A. & Spearing, D., 1982. Sandstone Depositional Environments. American Association of Petroleum Geologists Memoir 31, 410 pp.Google Scholar

  • Setudehnia, A., 1978. The Mesozoic sequence in southwest Iran and adjacent areas. Journal of Petroleum Geology 1, 3-42.Google Scholar

  • Simpson, E. L., Dilliard, K. A., Rowell, B. F. & Higgins, D., 2002. The fluvial-to-marine transition within the post-rift Lower Cambrian Hardyston Formation, eastern Pennsylvania, USA. Sedimentary Geology 147, 127-142.CrossrefGoogle Scholar

  • Soegaard, K. & Eriksson, K. A., 1985. Evidence of tide, storm, and wave interaction on a Precambrian siliciclastic shelf: the 1700 m.y. Ortega Group, New Mexico. Journal of Sedimentary Research 55, 672-684.Google Scholar

  • Stocklin, J., 1968. Salt deposits of the Middle East. Geological Sociey of America Special Paper 88, 157-181.Google Scholar

  • Stocklin, J., Ruttner, A. & Nabavi, M., 1964. New data on the Lower Paleozoic and Pre-cambrian of North Iran. Geological Survey of Iran, Reports 1, 29 pp.Google Scholar

  • Stow, D. A. V., 2005. Sedimentary Rocks in the Field, a Colour Guide. Manson Publishing, 320 pp.Google Scholar

  • Szabo, F., 1977. Permian and Triassic stratigraphy of Fars area. Proceedings of the Second Geological Symposium ‘Southwest Iran’ (Tehran, March 1977). The Iranian Petroleum Institute.Google Scholar

  • Szabo, F. & Kheradpir, A., 1978. Permian and Triassic Stratigraphy, Zagros basin, Southwest Iran. Journal of Petroleum Geology 1, 57-82.Google Scholar

  • Tucker, M. E., 1991. Sedimentary Petrology - An Introduction on the Origin of Sedimentary Rocks. Blackwell Scientific Publications, Oxford, 260 pp.Google Scholar

  • Tucker, M. E., 2003. Sedimentary Rocks in the Field (3rd ed.). John Wiley & Sons, 234 pp.Google Scholar

  • Van Loon, A. J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15, 3-55.Google Scholar

  • Webby, B. D., 1968. Devonian trace fossils from Beacon Group, Antarctica. New Zealand Journal of Geology and Geophysics 11, 1001-1008.CrossrefGoogle Scholar

  • Weckwerth, O., 2011. Palaeoslopes of Weichselian sand-bed braided rivers in the Torun Basin (Poland): results of a palaeohydraulic analysis. Geologos 17, 227-238.Google Scholar

  • Willis, B. J., 1993. Ancient river systems in the Himalayan foredeep, Chinji Village area, northern Pakistan. Sedimentary Geology 88, 1-76.CrossrefGoogle Scholar

  • Williams, P. F. & Rust, B. R., 1969. The sedimentology of a braided river. Journal of Sedimentary Petrology 39, 649-679.Google Scholar

About the article

Published Online: 2012-04-06

Published in Print: 2012-03-01

Citation Information: Geologos, Volume 18, Issue 1, Pages 13–36, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/v10118-012-0002-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in