Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Adam Mickiewicz University

3 Issues per year

CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805

Open Access
See all formats and pricing
More options …
Volume 18, Issue 1

Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?

Dmitry Ruban
  • Division of Mineralogy and Petrography, Geology and Geography Faculty, Southern Federal University, Zorge Street 40, Rostov-na-Donu, 344090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-04-06 | DOI: https://doi.org/10.2478/v10118-012-0003-3

Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?

Angiosperms evolved rapidly in the late Mesozoic. Data from the genetic-based approach called ‘molecular clock’ permit an evaluation of the radiation of flowering plants through geological time and of the possible influences of Mesozoic mass extinctions. A total of 261 divergence ages of angiosperm families are considered. The radiation of flowering plants peaked in the Albian, early Campanian, and Maastrichtian. From the three late Mesozoic mass extinctions (Jurassic/Cretaceous, Cenomanian/Turonian, and Cretaceous/Palaeogene), only the Cretaceous/Palaeogene event coincided with a significant, abrupt, and long-term decline in angiosperm radiation. If their link will be further proven, this means that global-scale environmental perturbation precluded from many innovations in the development of plants. This decline was, however, not unprecedented in the history of the angiosperms. The implication of data from the molecular clock for evolutionary reconstructions is limited, primarily because this approach deals with only extant lineages.

Keywords: angiosperms; radiation; mass extinction; molecular clock; Mesozoic

  • Alvarez, W., 2008. T. rex and the Crater of Doom - the story that waited 65 million years to be told - how a giant impact killed the dinosaurs, and how the crater was discovered. Princeton University Press (Princeton), 185 pp.Google Scholar

  • Anderson, J. M., Anderson, H. M., Archangelsky, S., Bamford, M., Chandra, S., Dettemann, M., Hill, R., McLoughlin, S. & Rössler, O., 1999. Patterns of Gondwana plant colonisation and diversification. Journal of African Earth Sciences 28, 145-167.Google Scholar

  • Archangelsky, S., Barreda, V., Passalia, M. G., Gandolfo, M., Prámparo, M., Romeroa, E., Cúneo, R., Zamuner, A., Iglesias, A., Llorens, M., Puebla, G. G., Quattrocchio, M. & Volkheimer, W., 2009. Early angiosperm diversification: evidence from southern South America. Cretaceous Research 30, 1073-1082.Web of ScienceGoogle Scholar

  • Courtillot, V., 2007. Evolutionary catastrophes - the science of mass extinction. Cambridge University Press (Cambridge), 173 pp.Google Scholar

  • Crane, P. R., 1987. Vegetational consequences of the angiosperm diversification. [In:] E. M. Friis, W. G. Chaloner & P. R. Crane (Eds): The origins of angiosperms and their biological consequences. Cambridge University Press (Cambridge), 181-201.Google Scholar

  • Crane P. R., Friis, E. M. & Pedersen, K. P., 1996. The origin and early diversification of angiosperms. Nature 374, 27-33.Google Scholar

  • Dilcher, D., 2010. Major innovations in angiosperm evolution. [In:] C. T. Gee (Ed.): Plants in Mesozoic time - morphological innovations, phylogeny, ecosystems. Indiana University Press (Bloomington), 97-116.Google Scholar

  • Eldredge, N. & Gould, S. J., 1972. Punctuated equilibria: an alternative to phyletic gradualism. [In:] T. J. M. Schoft (Ed.): Models in paleobiology. Freeman Cooper (San Francisco), 82-115.Google Scholar

  • Feild, T. S., Arens, N. C., Doyle, J. A., Dawson, T. E. & Donoghue, M. J., 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30, 82-107.Google Scholar

  • Friis, E. M., Doyle, J. A., Endress, P. K. & Leng, Q., 2003. Archaefructus: angiosperm precursor or specialized early angiosperm? Trends in Plant Science 8, 369-373.Google Scholar

  • Gould, S. J., 2002. The structure of evolutionary theory. Belknap Press (Cambridge), 1433 pp.Google Scholar

  • Gould, S. J., 2007. Punctuated equilibrium. Belknap Press (Cambridge), 396 pp.Google Scholar

  • Hallam, A., 1986. The Pliensbachian and Tithonian extinction events. Nature 319, 765-768.Google Scholar

  • Hallam, A. & Wignall, P. B., 1997. Mass extinctions and their aftermath. Oxford University Press (Oxford), 320 pp.Google Scholar

  • Harries, P. & Little, C. T. S., 1999. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 39-66.Google Scholar

  • Hedges, S. B. & Kumar, S. (Eds), 2009. The timetree of life. Oxford University Press (Oxford), 551 pp.Google Scholar

  • Heimhofer, U., Hochuli, P. A., Burla, S., Dinis, J. M. L. & Weissert, H., 2005. Timing of Early Cretaceous angiosperm diversification and possible links to major paleoenvironmental change. Geology 33, 141-144.Google Scholar

  • Heimhofer, U., Hochuli, P. A., Burla, S. & Weissert, H., 2007. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: Implications for the timing of the early angiosperm radiation. Review of Palaeobotany and Palynology 144, 39-76.Web of ScienceGoogle Scholar

  • Hughes, N. F., 1994. The enigma of angiosperm origins. Cambridge Uiversity Press (Cambridge), 303 pp.Google Scholar

  • Ivany, L. C. & Schopf, K. M. (Eds), 1996. New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 127, 1-359.Google Scholar

  • Magallón, S. & Castillo, A., 2009. Angiosperm diversification through time. American Journal of Botany 96, 349-365.Web of ScienceGoogle Scholar

  • Martin, W., Gierl, A. & Saedler, H., 1989. Molecular evidence for Pre-Cretaceous angiosperm origins. Nature 339, 46-48.Google Scholar

  • McElwain, J. C. & Punyasena, S. W., 2007. Mass extinction events and the plant fossil record. Trends in Ecology & Evolution 22, 548-557.Web of ScienceGoogle Scholar

  • Medlin, L. K., Sáez, A. G. & Young, J. R., 2008. A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary. Marine Micropaleontology 67, 69-86.Web of ScienceGoogle Scholar

  • Meredith, R. W., Janecka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., Goodbla, A., Eizirik, E., Simao, T. L. L., Stadler, T., Rabosky, D. L., Honeycutt, R. L., Flynn, J. J., Ingram, C. M., Steiner, C., Williams, T. L., Robinson, T. J., Burk-Herrick, A., Westerman, M., Ayoub, N. A., Springer, M. S. & Murphy, W. J., 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science 334, 521-524.Web of ScienceGoogle Scholar

  • Moldowan J. M., Dahl, J., Huizinga, B. J., Fago, F. J., Hickey, L. J., Peakman, T. M. & Taylor, D. W., 1984. The molecular fossil record of oleanane and its relation to Angiosperms. Science 265, 768-771.Google Scholar

  • Ogg, J. G., Ogg, G. & Gradstein, F. M., 2008. The concise geologic time scale. Cambridge University Press (Cambridge), 177 pp.Google Scholar

  • Philippe, M., Barale, G., Gomez, B., Guignard, G. & Thévenard, F., 1999. Paléodiversifications de flores terrestres phanérozoïques. GeoBios 32, 325-331.Google Scholar

  • Philippe, M., Gomeza, B., Girard, V., Coiffard, C., Daviero-Gomez, V., Thévenard, F., Billon-Bruyat, J.-P., Guiomard, M., Latil, J.-L., Le Loeuff, J., Neraudeau, D., Olivero, D. & Schlögl, J., 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld 17, 142-152.Google Scholar

  • Prothero, D. R., 1992. Punctuated equilibrium at twenty: a paleontological perspective. Skeptic 1, 38-47.Google Scholar

  • Quental, T. & Marshall, C. R., 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology & Evolution 25, 434-441.Google Scholar

  • Raup, D. W. & Sepkoski, J. J., 1982. Mass extinctions in the marine fossil record. Science 215, 1501-1503.Web of ScienceGoogle Scholar

  • Russell, D. A., 2009. Islands in the cosmos - the evolution of life on land. Indiana University Press (Bloomington), 453 pp.Google Scholar

  • Sepkoski, J. J., Jr., 1986. Phanerozoic overview of mass extinctions. [In:] D. M. Raup & D. Jablonski (Eds): Patterns and processes in the history of life. Springer (Berlin), 277-295.Google Scholar

  • Sepkoski, J. J., Jr. & Raup, D. M., 1986. Periodicity in marine extinction events. [In:] D. K. Elliott (Ed.): Dynamics of extinction. John Wiley (New York), 3-36.Google Scholar

  • Smith, A. B., 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356, 351-367.Google Scholar

  • Smith, A. B. & Peterson, K. J., 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences 30, 65-88.Google Scholar

  • Smith, A. B., Gale, A. S. & Monks, N. E. A., 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27, 241-253.Google Scholar

  • Soltis, D. E., Soltis, P. E., Endress, P. K. & Chase, M. W., 2005. Phylogeny and evolution of angiosperms. Sinauer Associates (Sunderland), 370 pp.Google Scholar

  • Taylor, D. W., Li, H., Dahl, J., Fago, F. J., Zinniker, D. & Moldowan, J. M., 2006. Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology 32, 179-190.Google Scholar

  • Tshudy, R. H. & Tshudy, B. D., 1986. Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America. Geology 14, 667-670.Google Scholar

  • Vajda, V. & McLoughlin, S., 2007. Extinction and recovery patterns of the vegetation across the Cretaceous-Palaeogene boundary - a tool for unravelling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology 144, 99-112.Web of ScienceGoogle Scholar

  • Vajda, V., Raine, J. I. & Hollis, C. J., 2001. Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294, 1700-1702.Google Scholar

  • Wilf, P. & Johnson, K. R., 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30, 347-368.Google Scholar

About the article

Published Online: 2012-04-06

Published in Print: 2012-03-01

Citation Information: Geologos, Volume 18, Issue 1, Pages 37–42, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/v10118-012-0003-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Federico Fanti, Tetsuto Miyashita, Luigi Cantelli, Fawsi Mnasri, Jihed Dridi, Michela Contessi, and Andrea Cau
Cretaceous Research, 2016, Volume 61, Page 263
Jowita Drohojowska and Jacek Szwedo
Cretaceous Research, 2015, Volume 52, Page 368

Comments (0)

Please log in or register to comment.
Log in