Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologos

The Journal of Adam Mickiewicz University

3 Issues per year


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Open Access
Online
ISSN
2080-6574
See all formats and pricing
More options …

Palaeontology of the Middle Turonian limestones of the Nysa Kłodzka Graben (Sudetes, SW Poland): biostratigraphical and palaeogeographical implications

Alina Chrząstek
  • Institute of the Geological Sciences, Wrocław University, Maksa Borna 9, PL 50-204 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-08-09 | DOI: https://doi.org/10.2478/v10118-012-0007-z

Palaeontology of the Middle Turonian limestones of the Nysa Kłodzka Graben (Sudetes, SW Poland): biostratigraphical and palaeogeographical implications

The ammonites Lewesiceras peramplum Mantell and ?Lewesiceras sp. are reported from the Upper Cretaceous in the Nysa Kłodzka Graben; they date from the Middle Turonian and ?Coniacian, respectively. The Middle Turonian limestones of the Stara Bystrzyca quarry contain an abundant assemblage of inoceramids (Inoceramus cuvieri Sowerby and I. lamarcki Parkinson) and other bivalves, including oysters, as well as brachiopods and trace fossils. Micropalaeontological data show the presence of foraminifers and siliceous sponge spiculae, bryozoans, ostracods and fragments of bivalves and gastropods. The Middle Turonian calcareous deposits belongs to the upper part of the Inoceramus lamarcki Zone (late Middle Turonian) and were deposited on a shallow, subtidal offshore shelf. They overlie the Middle Turonian Bystrzyca and Długopole Sandstones, which represent foreshore-shoreface delta deposits. The fossil assemblage suggests a moderate- to low-energy, normal-salinity environment with occasionally an oxygen deficit.

Keywords: Middle Turonian; Sudetes; Nysa Kłodzka Graben; ammonites; inoceramids; biostratigraphy

  • Allington-Jones, L., Braddy, S. J. & Trueman, C. N., 2010. Palaeoenvironmental implications of the ichnology and geochemistry of the Westbury Formation (Rhaetian), Westbury-on-Severn, South-West England. Palaeontology 53, 491-506.CrossrefGoogle Scholar

  • Andert, H., 1934. Die Kreideablagerungen zwischen Elbe und Jeschken. Teil III: Die Fauna der obersten Kreide in Sachsen, Böhmen und Schlesien. Abhandlungen der Preussischen Geologischen Landesanstalt 159, 477 pp.Google Scholar

  • Ayyasami, K., 2006. Role of oysters in biostratigraphy: a case study from the Cretaceous of the Ariyalur area, southern India. Geosciences Journal 10, 237-247.CrossrefGoogle Scholar

  • Biernacka, J. & Józefiak, M., 2008. Kilka uwag o tzw. wyspie wschodniosudeckiej na podstawie piaskowców z Jerzmanic Zdroju (dolny turon, niecka północnosudecka) [A few comments on the so-called East Sudetic Island on the basis of the Jerzmanice Zdrój sandstones (Lower Turonian, North Sudetic Basin)]. [In:] J. Wojewoda (Ed.): Baseny Śródgórskie, Kontekst regionalny środowisk i procesów sedymentacji, Kudowa Zdrój, 1-2.Google Scholar

  • Biernacka, J. & Józefiak, M., 2009. The Eastern Sudetic Island in the Early-to-Middle Turonian: evidence from heavy minerals in the Jerzmanice sandstones, SW Poland. Acta Geologica Polonica 59, 545-565.Google Scholar

  • Boyer, D. L. & Droser, M. L., 2011. A combined trace- and body-fossil approach reveals high-resolution record of oxygen fluctuations in Devonian seas. Palaios 26, 500-508.CrossrefGoogle Scholar

  • Bromley, R. G., 1996. Trace fossils - biology, taphonomy and applications. Chapman & Hall, London, 347 pp.Google Scholar

  • Bromley, R. G. & Ekdale, A. A., 1984. Chondrites: a new fossil indicator of anoxia in sediments. Science 224, 872-874.CrossrefGoogle Scholar

  • Carmona, N. B., Buatois, L. A., Ponce, J. J. & Mángano, M. G., 2009. Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: trace-fossil distribution and response to environmental stresses. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 75-86.Google Scholar

  • Čech, S., 1989. Upper Cretaceous Didymotis events from Bohemia. [In:] J. Wiedman (Ed.): Cretaceous of the Western Tethys. Proceedings of the 3rd International Cretaceous Symposium (Tübingen 1987). Stuttgart, 657-676.Google Scholar

  • Chen, Z.-Q., Tong, J. & Fraiser, M. L., 2011. Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 299, 449-474.Google Scholar

  • Chrząstek, A., 2008a. A new Lower Coniacian fauna from the Jerzmanice Zdrój region of the North Sudetic Basin, SW Poland. Geologia Sudetica 40, 33-50.Google Scholar

  • Chrząstek, A., 2008b. Vertebrate remains from the Lower Muschelkalk of Raciborowice Górne (North-Sudetic Basin, SW Poland). Geological Quarterly 52, 225-238.Google Scholar

  • Chrząstek, A., 2008c. Trace fossils from the Lower Muschelkalk of the North-Sudetic Basin (SW Poland). [In:] A. Uchman (Ed.): Abstract Book and the Intra-Congress Field Trip Guidebook. The Second International Congress on Ichnology (Cracow, Poland), p. 27.Google Scholar

  • Chrząstek, A. & Wojewoda, J., 2011. Mesozoic of South-Western Poland (The North Sudetic Synclinorium). [In:] A. Żelaźniewicz (Ed.): Mezozoik i kenozoik Dolnego Śląska. 81 Zjazd PTG, Wrocław, 1-10.Google Scholar

  • Collignion, M., 1971-1972. Contribution à l'étude des basins sédimentaires. Le Bassin Cotier du Golfe du Menable (Madagascar). Caractère endémique de sa fauna. Bulletin de l'Academie Malgache 49, 153-162.Google Scholar

  • Cummings, J. P. & Hodgson, D. M., 2011. Assessing controls on the distribution of ichnotaxa in submarine fan environments, the Basque Basin, northern Spain. Sedimentary Geology 239, 162-187.CrossrefGoogle Scholar

  • D'Alessandro, A. & Uchman, A., 2007. Bichordites and Bichordites-Rosselia ichnoassemblages from the Lower Pleistocene Tursi Sandstone (southern Italy). [In:] R. G. Bromley, L. A. Buatois, G. Mángano, J. F. Genise & R. N. Melchor (Eds): Sediment-organism interactions: a multifaceted ichnology. SEPM Special Publication 88, 213-221.Google Scholar

  • Diedrich, C. & Hirayama, R., 2003. Turtle remains (Testudines, Chelonioidea) from the Middle Turonian of northwest Germany. Netherlands Journal of Geosciences 82, 161-167.Google Scholar

  • Don, J., 1996. The Late Cretaceous Nysa Graben: implications for Mesozoic-Cenozoic fault-block tectonics of the Sudetes. Zeitschrift für Geologischen Wissenschaften 24, 317-324.Google Scholar

  • Don, B. & Don, J., 1960. Notes on the origin of the Nysa Graben. Acta Geologica Polonica 10, 71-106. (In Polish, with English summary).Google Scholar

  • Don, J. & Gotowała, R., 2008. Tectonic evolution of the late Cretaceous Nysa Kłodzka Graben, Sudetes, SW Poland. Geologia Sudetica 40, 51-63.Google Scholar

  • Don, J. & Wojewoda, J., 2004. Tektonika rowu Górnej Nysy Kłodzkiej - sporne problemy [Tectonics of the upper Nysa Kłodzka Graben - controversial issues]. Przegląd Geologiczny 52, 883-886.Google Scholar

  • Don, J. & Wojewoda, J., 2005. Tektonika rowu górnej Nysy Kłodzkiej - sporne problem - odpowiedź [Tectonics of upper Nysa Kłodzka Graben - controversial issues - reply). Przegląd Geologiczny 53, 212-221.Google Scholar

  • Ekrt, B., Košťák, M., Mazuch, M., Voigt, S. & Wiese, F., 2008. New records of teleosts from the Late Turonian (Late Cretaceous) of the Bohemian Cretaceous Basin (Czech Republic). Cretaceous Research 29, 695-673.Google Scholar

  • Etter, W., 1996. Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 325-341.Google Scholar

  • Feldman, R. M., Schweitzer, C. E., Redman, C. M., Morris, N. J. & Ward, D. J., 2007. New Late Cretaceous lobsters from the Kyzylkum Desert of Uzbekistan. Journal of Paleontology 81, 701-713.CrossrefGoogle Scholar

  • Fistek, J. & Gierwielaniec, J., 1957. Szczegółowa mapa geologiczna Sudetów w skali 1:25 000, arkusz Bystrzyca Nowa, M33-70Aa [Detailed geological map of the Sudetes, Bystrzyca Nowa sheet]. Wydawnictwa Geologiczne, Warszawa.Google Scholar

  • Fistek, J. & Gierwielaniec, J., 1964. Objaśnienia do szczegółowej mapy geologicznej Sudetów, Arkusz Bystrzyca Nowa [Explanations to the detailed geological map of the Sudetes, Bystrzyca Nowa sheet]. Wydawnictwa Geologiczne, Warszawa, 5-63.Google Scholar

  • Flegel, K., 1904. Heuscheuer und Adersbach-Weckelsdorf. Eine Studie über die Obere Kreide im bohemisch-schlesischen Gebirge. Breslau, 36 pp.Google Scholar

  • Gale, A. S., 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. [In:] S. P. Hesselbo & D. N. Parkinson (Eds): Sequence stratigraphy in British geology. Geological Society Special Publications 103, 177-195.Google Scholar

  • Gawor-Biedowa, E., 1980. Turonian and Coniacian foraminifera from the Nysa Trough, Sudetes, Poland. Acta Palaeontologica Polonica 25, 3-54.Google Scholar

  • Geinitz, H. B., 1840. Charakteristik der Schichten und Petrafecten des sächsischen Kreidegebirges. B. Fische, Crustaceen, Mollusken. Dresden/Leipzig, Arnoldischen Buchhandlung, 38-62.Google Scholar

  • Geinitz, H. B., 1842. Charakteristik der Schichten und Petrafecten des sächsisch-böhmischen Kreidegebirges. Die sächsisch-böhmische Schweiz, die Oberlausitz und das Innere von Böhmen. Dresden/Leipzig, Arnoldischen Buchhandlung, 63-116.Google Scholar

  • Geinitz, B. H., 1843. Die Versteinerungen von Kieslingswalda und Nachtrag zur Charakteristik des sächsisch-böhemischen Kreidegebirges. Dresden/Leipzig, Arnoldischen Buchhandlung, 1-23.Google Scholar

  • Giannetti, A., 2010. Influence of climate, sea-level changes and tectonics on ichnoassemblages distribution in a carbonate-dominated, deep-marine environment (Upper Paleocene, Zumaya section). Palaeogeography, Palaeoclimatology, Palaeoecology 285, 104-118.Google Scholar

  • Giannetti, A. & McCann, T., 2010. The Upper Paleocene of the Zumaya Section (northern Spain): review of the ichnological content and preliminary palaeoecological interpretation. Ichnos 17, 137-161.CrossrefGoogle Scholar

  • Gingras, M. K., MacEachern, J. A. & Dashtgard, J. E., 2011. Process ichnology and the elucidation of physicchemical stress. Sedimentary Geology 237, 115-134.CrossrefGoogle Scholar

  • Hancock, J. M., 1990. Sea-level changes in the British region during the Late Cretaceous. Proceedings of the Geologists' Association 100, 565-594.Google Scholar

  • Hancock, J. M. & Kauffman, E. G., 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society of London 136, 175-186.Google Scholar

  • Hancock, J. M. & Walaszczyk, I., 2004. Mid-Turonian to Coniacian changes of sea level around Dallas, Texas. Cretaceous Research 25, 459-471.CrossrefGoogle Scholar

  • Haq, B., Hardenbol, J. & Vail, P., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156-1167.CrossrefPubMedGoogle Scholar

  • Harries, P. J. & Ozanne, C. R. 1998. General trends in predation and parasitism upon inoceramids. Acta Geologica Polonica 48, 377-386.Google Scholar

  • Herman, A. B. & Spicer, R. A., 1997. New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 128, 227-251.CrossrefGoogle Scholar

  • Hilbrecht, H. & Harries, P. J., 1996. Lower Turonian Euramerican Inoceramidae. A morphologic, taxonomic, and biostratigraphic overview. [In:] P. J. Harries, E. G. Kauffman and J. S. Crampton (Eds): A report from the First Workshop on Early Turonian Inoceramids (Hamburg). Mitteilungen aus dem Geologisch-Paläontologischen Museum der Universität Hamburg 77, 641-671.Google Scholar

  • Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H. & Hautmann, M., 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 216-226.Google Scholar

  • Ion, J., Antonescu, E., Melinite, M. C. & Szasz, L., 2004. Integrated biostratigraphy of the Turonian of Romania. Acta Palaeontologica Romaniae 4, 151-161.Google Scholar

  • Ivannikov, A. V., 1967. A giant ammonite from the southern border of the Donets Basin, USSR. Dopovidi Akademiyi Nauk Ukrayins'koyi RSR, seriya B: Geologiya, Geofizika, Khimiya ta Biologiya 1, 13-17.Google Scholar

  • Jagt-Yazykova, E. A., 2011. Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scripta Geologica 143, 15-121.Google Scholar

  • Jagt-Yazykova, E. A. (in press). Ammonite faunal dynamics across bio-events during the mid- and Late Cretaceous along the Russian Pacific coast. Acta Palaeontologica Polonica (http://dx.doi.org/10.4202/app.2011.0076).CrossrefGoogle Scholar

  • Jerzykiewicz, T., 1970. The Upper Cretaceous turbidite sequence in the Sudetes (south-western Poland). Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Géologiques et Géographiques 18, 149-159.Google Scholar

  • Jerzykiewicz, T., 1971. A flysch/littoral succession in the Sudetic Upper Cretaceous. Acta Geologica Polonica 21, 165-199.Google Scholar

  • Jerzykiewicz, T., 1975. Pozycja geologiczna osadów górno kredowych depresji śródsudeckiej i rowu Nysy Kłodzkiej [Tectonic position of the Late Cretaceous deposits in the Intra-Sudetic Basin and the Nysa Kłodzka Graben]. [In:] A. Grocholski (Ed.): Przewodnik 48 Zjazdu PTG. 30 lat geologii polskiej na Dolnym Śląsku (Świdnica), 225-252.Google Scholar

  • Jerzykiewicz, T. & Teisseyre, B., 1974. Foraminiferal assemblages and facies changes in the Cretaceous flysch of the Nysa Graben (Sudety Mountains). Annales Societatis Geologorum Poloniae 46, 203-216.Google Scholar

  • Kaesler, R. L., 1996. Treatise on invertebrate paleontology. Part L. Mollusca 4. Revisited. Volume 4: Cretaceous Ammonoidea. The Geological Society of America / University of Kansas, 362 pp.Google Scholar

  • Kaplan, U. & Kennedy, W. J., 1996. Upper Turonian and Coniacian ammonite stratigraphy of Westphalia, NW-Germany. Acta Geologica Polonica 46, 305-352.Google Scholar

  • Kauffman, E. G., Harries, P. J., Meyer, C., Villamil, T., Arango, C. & Jaecks, G., 2007. Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. Journal of Paleontology 81, 64-81.CrossrefGoogle Scholar

  • Kennedy, W. J. & Wright, C. W., 1979. Vascoceratid ammonites from the type Turonian. Palaeontology 22, 665-683.Google Scholar

  • Kennedy, W. J. & Wright, C. W., 1981. Desmoceratacean ammonites from the type Turonian. Palaeontology 24, 493-506.Google Scholar

  • Kennedy, W. J., Wright, C. W. & Chancellor, G. R., 1983. The Cretaceous ammonite Eopachydiscus and the origin of the Pachydiscidae. Paleontology 26, 655-662.Google Scholar

  • Kennedy, W. J., Cobban, W. A., Hancock, J. M. & Gale, A. S., 2005a. Upper Albian and Lower Cenomanian ammonites from the Main Street Limestone, Graylon Marl and Del Rio Clay in northeast Texas. Cretaceous Research 26, 349-428.CrossrefGoogle Scholar

  • Kennedy, W. J., Walaszczyk, I. & Cobban, W. A., 2005b. The Global Boundary Section and Point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, U. S. A. Episodes 28, 93-104.Google Scholar

  • Kędzierski, M., 2005. Paleogeografia wschodniej części basenu wokółsudeckiego w cenomanie, turonie i koniaku [Palaeogeography of the estern part of the Circum-Sudetic Basin in the Cenomanian, Turonian and Coniacian]. [In:] J. Skoczylas (Ed.): Referaty XIV.Polskie Towarzystwo Geologiczne, Uniwersytet Adama Mickiewicza, Poznań, 49-58.Google Scholar

  • Kędzierski, M., 2008. Calcareous nannofossil and inoceramid biostratigraphies of a Middle Turonian to Middle Coniacian section from the Opole Trough of SW Poland. Cretaceous Research 29, 451-467.CrossrefGoogle Scholar

  • Kędzierski, M. & Uchman, A., 2001. Ichnofabric of the Upper Cretaceous marlstones in the Opole region, southern Poland. Acta Geologica Polonica 51, 81-91.Google Scholar

  • Kędzierski, M., Machaniec, E., Rodríguez-Tovar, F. J. & Uchman, A., 2012. Bio-events, foraminiferal and nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval in the Subsilesian Nappe, Rybie section, Polish Carpathians. Cretaceous Research 35, 181-198.CrossrefGoogle Scholar

  • Kin, A., 2007. Uwagi o rodzaju Lewesiceras (Pachydiscidae) ze środkowego i górnego turonu kamieniołomu Odra Nowa w Opolu [Some remarks concerning the genus Lewesiceras (Pachydiscidae) from the Middle and Upper Turonian of the Odra Nowa quarry in Opole]. [In:] A. Żylińska (Ed.): Granice paleontologii. XX Konferencja Naukowa Paleobiologów i Biostratygrafów PTG, Uniwersytet Warszawski, p. 67.Google Scholar

  • Kin, A. & Niedźwiedzki, R., 2012. First record of the puzosiine ammonite genus Pachydesmoceras from the Middle and Upper Turonian of Poland. Cretaceous Research 33, 15-20.CrossrefGoogle Scholar

  • Klug, Ch., 2002. Conch parameters and habitats of Emsian and Eifelian ammonoids from the Tafilalt (Morocco) and their relation to global events. Abhandlungen der geologischen Bundesanstalt 57, 523-538.Google Scholar

  • Knaust, D., 2009. Characterisation of a Campanian deepsea fan system in the Norwegian Sea by means of ichnofabrics. Marine and Petroleum Geology 26, 1199-1211.CrossrefGoogle Scholar

  • Komuda, J. & Don, J., 1964. On the brachyanticline in Bystrzyca Kłodzka (Sudeten Mts., Poland). Acta Geologica Polonica 14, 169-174 (In Polish with English summary).Google Scholar

  • Košťák, M. & Wiese, F., 2011. Extremely rare Turonian belemnites from the Bohemian Cretaceous Basin and their palaeogeographical importance. Acta Palaeontologica Polonica 56, 433-437.CrossrefGoogle Scholar

  • Košťák, M., Čech, S., Ekrt, B., Mazuch, M., Wiese, F., Voigt, S. & Wood, Ch.J., 2004. Belemnites of the Bohemian Cretaceous Basin in a global context. Acta Geologica Polonica,54, 511-533.Google Scholar

  • Kumagae, T., Maeda, H. & Komatsu, T., 2011. Paleoecology of Inoceramus amakusensis Nagao et Matsumoto, 1940 (Bivalvia) in a Late Cretaceous shallow clastic sea: the Himenoura Group, Kyushu, Japan. Cretaceous Research 32, 738-749.CrossrefGoogle Scholar

  • Lamolda, M. A., López, G. & Martínez, R., 1989. Turonian integrated biostratigraphy in the Estella Basin (Navarra, Spain). [In:] J. Wiedman (Ed.): Cretaceous of the Western Tethys, Proceedings of the 3rd International Cretaceous Symposium (Tübingen). Stuttgart-Schweizerbart, 145-159.Google Scholar

  • Landman, N. H., Cobban, W. A. & Larson, N. L. 2012. Mode of life and habitat of scaphitid ammonites. Geobios, 45, 87-98.Google Scholar

  • Lommerzheim, A., 1976. Zur Paläontologie, Fazies, Palaeogeographie und Stratigraphie der turonen Grünsande (Oberkreide) im Raum Mülheim/Broich/ Speldorf (Westfalen) mit einer Beschreibung der Cephalopodenfauna [Paleontology, facies, paleogeography and stratigraphy of Turonian greensands (Upper Cretaceous) in the Mulheim-Broich-Speldorf region (Westphalia) with a description of the Cephalopod fauna]. Decheniana 129, 197-244. (in German, with English summary)Google Scholar

  • Lorenc, S., 1978. Petrografia skał osadowych [Petrography of sedimentary rocks]. Wydawnictwa Uniwersytetu Wrocławskiego, 176 pp.Google Scholar

  • MacEachern, J. A. & Gingras, M. K., 2007. Recognition of brackish-water trace-fossil suites in the Cretaceous Western Interior Seaway of Alberta Canada. [In:] R. G. Bromley, L. A. Buatois, G. Mángano, J. F. Genise & R. N. Melchor (Eds): Sediment-organism interactions: a multifaceted ichnology. SEPM Special Publication 88, 149-193.Google Scholar

  • MacEachern, J. A., Pemberton, S. G., Gingras, M. K. & Bann, K. L., 2007. The ichnofacies paradigm: a fiftyyear retrospective. [In:] W. Miller, III (Ed.): Trace fossils - concepts, -problems, prospects. Elsevier, Amsterdam, 51-77.Google Scholar

  • Machalski, M., 2012. Stratigraphically important ammonites from the Campanian-Maastrichtian boundary interval of the Middle Vistula River section, central Poland. Acta Geologica Polonica 62, 91-116.Google Scholar

  • Malinowska, L., 1984. Budowa geologiczna Polski, Tom II, Atlas skamieniałości przewodnich i charakterystycznych, część 2c, Mezozoik, Kreda [Geology of Poland, Part II, Atlas of fossils, 2c, Mesozoic, Cretaceous]. Wydawnictwa Geologiczne, Warszawa, 579 pp.Google Scholar

  • Malpas, J. A., Gawthorpe, R. L., Pollard, J. E. & Sharp, I. R., 2005. Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt: implications for depositional processes and sequence stratigraphic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 215, 239-264.Google Scholar

  • Manecki, A. & Muszyński, M., 2008. Przewodnik do petrografii [A guide to petrography]. AGH, Kraków, 551 pp.Google Scholar

  • Marcinowski, R., 1974. The transgressive Cretaceous (Upper Albian through Turonian) deposits of the Polish Jura chain. Acta Geologica Polonica 24, 117-217.Google Scholar

  • Marcinowski, R. & Szulczewski, M., 1972. Condensed Cretaceous sequence with stromatolites in the Polish Jura chain. Acta Geologica Polonica 22, 515-538.Google Scholar

  • Marcinowski, R., Walaszczyk, I. & Olszewska-Nejbert, D., 1996. Stratigraphy and regional development of the mid-Cretaceous (Upper Albian through Coniacian) of the Mangyshlak Mountains, Western Kazakhstan. Acta Geologica Polonica 46, 1-60.Google Scholar

  • Martin, K.-D., 2004. A re-evaluation of the relationship between trace fossils and dysoxia. [In:] D. McIlroy (Ed.): The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society, London, Special Publications 228, 141-156.Google Scholar

  • Matsukawa, M., Sendon, S. V., Mateer, F.T, Sato, T. & Obata, I., 2012. Early Cretaceous ammonite fauna of Catanduanes Island, Philippines. Cretaceous Research 37, 261-271.CrossrefGoogle Scholar

  • Matsumoto, T., 1979. Notes on Lewesiceras and Nowakites (pachydiscid ammonites) from the Cretaceous of Hokkaido. Transaction and Proceedings of the Palaeontological Society of Japan. New Series II, 30-44.Google Scholar

  • Matsumoto, T., 2003. A pachydiscid ammonite Lewesiceras from the Cenomanian of Japan. Studies of the Cretaceous ammonites from Hokkaido and Sakhalin-XCVI. Proceedings of the Japan Academy, Series B: Physical and Biological Sciences 79, 197-200.Google Scholar

  • Matsumoto, T., Nemoto, M. & Suzuki, Ch., 1990. Gigantic ammonites from the Cretaceous Futaba Group of Fukushima Prefecture. Transaction and Proceedings of the Palaeontological Society of Japan 157, 366-381.Google Scholar

  • McCann, T., 1990. Distribution of Ordovician-Silurian ichnofossil assemblages in Wales - implications for Phanerozoic ichnofaunas. Lethaia 23, 243-255.CrossrefGoogle Scholar

  • McIlroy, D., 2007. Ichnology of a macrotidal tide-dominated deltaic depositional system: Lajas Formation, Neuquén Province, Argentina. [In:] R. G. Bromley, L. A. Buatois, G. Mángano, J. F. Genise & R. N. Melchor (Eds): Sediment-organisms interactions: a multifaceted ichnology. SEPM Special Publication 88, 195-211.Google Scholar

  • Mitura, F., 1957. Inoceramy górnokredowe Bachowic [Inocérames du Crétacé supérieur de Bachowice]. Annales Societatis Geologorum Poloniae 26, 273-296. (in Polish, with French and Russian summaries)Google Scholar

  • Monaco, P., Rodríguez-Tovar, F. J. & Uchman, A., 2012. Ichnological analysis of lateral environmental heterogeneity within the Bonarelli Level (uppermost Cenomanian) in the classical localities near Gubbio, central Appenines, Italy. Palaios 27, 48-54.CrossrefGoogle Scholar

  • Monnet, C. & Bücher, H., 2007. Ammonite-based correlations in the Cenomanian-Lower Turonian of northwest Europe, central Tunisia and the Western Interior (North America). Cretaceous Research 28, 1017-1032.CrossrefGoogle Scholar

  • Moore, R. C., 1964. Treatise on invertebrate paleontology, Part C, Protista 2, Sarcodina, Chiefly "Thecomoebians" and Foraminiferida, Vol. 1-2. Geological Society of America / University of Kansas Press, Kansas, 900 pp.Google Scholar

  • Moore, R. C., 1968. Treatise on invertebrate paleontology, Part L, Mollusca 4, Cephalopoda, Ammonoidea. Geological Society of America / University of Kansas Press, Kansas, 490 pp.Google Scholar

  • Mortimore, R. N. & Pomerol, B., 1991. Stratigraphy and eustatic implications of trace fossil events in the Upper Cretaceous chalk of northern Europe. Palaios 5, 216-231.CrossrefGoogle Scholar

  • Niedźwiedzki, R. & Kalina, M., 2003. Late Cretaceous sharks in the Opole Silesia region (SW Poland). Geologia Sudetica 35, 13-24.Google Scholar

  • Niedźwiedzki, R. & Salamon, M., 2005. Late Cretaceous crinoids from the Sudetes (southern Poland). Freiberger Forschungshefte C 507: Paläontologie, Stratigraphie. Fazies 13, 1-9.Google Scholar

  • Olivero, E. B., 2012. Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretaceous Research 34, 348-366.CrossrefGoogle Scholar

  • Ozanne, C. R. & Harries, P. J., 2002. Role of predation and parasitism in the extinction of the inoceramid bivalves: an evaluation. Lethaia 35, 1-19.CrossrefGoogle Scholar

  • Pachucki, C., 1959. O stratygrafii i litologii kredy w rowie Nysy Kłodzkiej [Über die Stratigraphie und Lithologie der Kreide in Neissegraben]. Annales Universitatis M. Curie-Skłodowskiej 12, 1-65. (in Polish, with summaries in Russian and German]Google Scholar

  • Phillips, Ch., McIlroy, D. & Elliott, T. 2011. Ichnological characterization of Eocene/Oligocene turbidites from the Grès d'Annet Basin, French Alps, SE France. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 67-83.Google Scholar

  • Radwańska, Z., 1962. Fauna spągowych warstw strefy Inoceramus schloenbachi z Wilkanowa (Dolny Śląsk) [The fauna of the bottom beds of Inoceramus schloenbachi Zone from Wilkanów (Lower Silesia)]. Biuletyn Państwowego Instytutu Geologicznego 173, 129-167. (in Polish, with English summary)Google Scholar

  • Radwańska, Z., 1964. Górnoturońska strefa Inoceramus glatziae w niecce śródsudeckiej i w rowie Nysy [The Upper Turonian Inoceramus glatziae Zone in the Intra-Sudetic Basin and in the Nysa Kłodzka Graben]. Przegląd Geologiczny 7/8, 336-338.Google Scholar

  • Radwański, S., 1964. Niektóre dane o kredzie na Dolnym Śląsku [Some data on the Cretaceous in Lower Silesia]. Przegląd Geologiczny 7/8, 333-336.Google Scholar

  • Radwański, S., 1965. Budowa geologiczna rowu Nysy w okolicach Bystrzycy Kłodzkiej i Długopola Dolnego [Geology of the Nysa Graben in the vicinity of Bystrzyca Kłodzka and Długopole Dolne]. Biuletyn Instytutu Geologicznego 185, 229-242. (in Polish, with English summary).Google Scholar

  • Radwański, S., 1966. Facje osadowe i charakterystyka faunistyczna górnej kredy Środkowych Sudetów [Upper Cretaceous facies and faunas in the central part of the Sudety Mts]. Rocznik PTG 36, 99-119. (in Polish, with English summary).Google Scholar

  • Radwański, S., 1968. Górnokredowe osady w Sudetach i wpływ tektoniki na ich sedymentację [Upper Cretaceous deposits in Sudetes and influence of tectonics upon their sedimentation]. Kwartalnik Geologiczny 12, 607-619. (in Polish, with English summary)Google Scholar

  • Radwański, S., 1975. Kreda Sudetów Środkowych w świetle wyników nowych otworów wiertniczych [Upper Cretaceous of the central part of the Sudetes in the light of new borehole materials]. Biuletyn Instytutu Geologicznego 287, 5-59. (in Polish, with English summary)Google Scholar

  • Remin, Z., 2010. Upper Coniacian, Santonian, and lowermost Campanian ammonites of the Lipnik-Kije section, central Poland - taxonomy, stratigraphy, and palaeogeographic significance. Cretaceous Research 31, 154-180.CrossrefGoogle Scholar

  • Robaszyński, F., Pomerol, B., Masure, E., Bellier, J.-P. & Deconinck, J.-F., 2005. Stratigraphy and stage boundaries in reference sections of the Upper Cretaceous Chalk in the east of the Paris Basin: the "Craie 700" Provins boreholes. Cretaceous Research 26, 157-169.Google Scholar

  • Rodríguez-Tovar, F. J. & Uchman, A., 2010. Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event in the Fuente de la Vidriera section, Bethic Cordillera, Spain. Palaios 25, 576-587.CrossrefGoogle Scholar

  • Rodríguez-Tovar, F. J., Uchman, A., Martin-Algarra, A. & O'Dogherty, L., 2009. Nutrient spatial variation during intrabasinal upwelling at the Cenomanian-Turonic oceanic anoxic event in the westernmost Tethys: an ichnological and facies approach. Sedimentary Geology 215, 83-93.CrossrefGoogle Scholar

  • Rotnicka, J., 2005. Ichnofabrics of the Upper Cretaceous fine-grained rocks from the Góry Stołowe Mountains (Sudetes, SW Poland). Geological Quarterly 49, 15-30.Google Scholar

  • Rotnicka, J., 2007. Transgressive and regressive cycles in fine-grained rocks successions: an example from the Upper Cretaceous Plänermergel, Góry Stołowe Mts., Sudetes. [In:] J. Wojewoda (Ed.): Review of Permian sedimentary successions of Boskovice Trough, Nachod Basin and Trutnov Basin. Sedimentologica 1, 18-30.Google Scholar

  • Savary, B., Olivero, D. & Gaillard, C., 2004. Calciturbidite dynamics and endobenthic colonization: example from a late Barremian (Early Cretaceous) succession in southeastern France. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 221-239.Google Scholar

  • Savrda, C. E., 1995. Ichnologic applications in paleoceanographic, paleoclimatic, and sea-level studies. Palaios 10, 565-577.CrossrefGoogle Scholar

  • Savrda, C. E., 2007. Trace fossils and marine benthic oxygenation. [In:] W. Miller, III (Ed.): Trace fossils - concepts, problems, prospects. Elsevier, Amsterdam, 149- 158.Google Scholar

  • Savrda, C. E. & Bottjer, D. J., 1986. Trace fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14, 3-6.CrossrefGoogle Scholar

  • Schoeneichowa-Jaskowiak, M. & Krassowska, A., 1988. Paleomiąższości, litofacje i paleotektonika epikontynentalnej kredy górnej w Polsce [Palaeothickness, lithofacies and palaeotectonics of the epicontinental Upper Cretaceous in Poland]. Kwartalnik Geologiczny 32, 177-198. (in Polish, with English summary)Google Scholar

  • Scupin, H., 1907. Die stratigraphische Beziehungen der obersten Kreideschichten in Sachsen, Schlesien und Böhmen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 24, 676-715.Google Scholar

  • Scupin, H., 1912-1913. Die Löwenberger Kreide und ihre Fauna. Palaeontographische Beiträge zur Naturgeschichte der Vorzeit, Supplement Band 6, 5-275.Google Scholar

  • Scupin, H., 1935. Die stratigraphische Beziehungen der mittel-und nordsudetischen Kreide. Zeitschrift der deutschen geologischen Gesellschaft 87, 523-540.Google Scholar

  • Scupin, H., 1936. Zur Paläogeographie des Sudetischen Kreidemeeres. Zeitschrift der deutschen geologische Gesellschaft 88, 309-325.Google Scholar

  • Seibertz, E., 1978. Ökologie, Fazies und Fauna im Turon des südlichen Münsterlandes: ein Fazies Wirkungs-schema. Pälaontologische Zeitschrift 52, 93-109.CrossrefGoogle Scholar

  • Seilacher, A., 1967. Bathymetry of trace fossils. Marine Geology 5, 413-428.CrossrefGoogle Scholar

  • Sornay, J. 1964. Sur un Lewesiceras nouveau du Turonien d'Uchaux (Vaucluse). Annales de Paléontologiey, Invertébrates 50, 181-187.Google Scholar

  • Stevens, G. R., 1988. Giant ammonites: a review. [In:] J. Wiedman & J. Kullmann (Eds): 2nd International Cephalopod Symposium ‘Cephalopods - Present and Past’ (O. H. Schindewolf Symposium, Tübingen). E. Schweizerbarťsche Verlagsbuchhandlung, Stuttgart, 141-166.Google Scholar

  • Summesberger, H., Švábenicka, L., Čech, S., Hradecká, L. & Hofmann, T., 1999. New palaeontological and biostratigraphical data on the Klement and Pálava Formations (Upper Cretaceous) in Austria (Waschberg-Ždánice Unit). Geologie und Paläontologie, Naturhistorisches Museum Wien 100 A, 39-79.Google Scholar

  • Stürm, F., 1901. Der Sandstein von Kieslingswalde in der Grafschaft Glatz und seine Fauna. Jahrbuch der Königlichen preussischen geologischen Landesanstalt und Bergakademie, Abhandlungen von ausserhalb der Königlichen geologischen Landesanstalt stehenden Personen 21, 39-98.Google Scholar

  • Szulc, J., 1990. Ichnological indicators of the sedimentary environment fluctuation. [In:] A. Bodzioch, S. Kwiatkowski, M. Michalik, E. Morycowa & J. Szulc (Eds): International Workshop - Field Seminar ‘The Muschelkalk - sedimentary environments, facies and diagenesis’ (Kraków), 23-25.Google Scholar

  • Szulc, J., 2000. Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys Ocean. Annales Societatis Geologorum Poloniae 70, 1-48.Google Scholar

  • Tarkowski, R., 1991. Stratygrafia, makroskamieniałości i paleogeografia utworów górnej kredy niecki opolskiej [Stratigraphy, macrofossils and palaeogeography of the Upper Cretaceous from the Opole Trough]. Zeszyty Naukowe AGH, Geologia 51, 1-156. (in Polish, with English summary)Google Scholar

  • Teisseyre, B., 1975. Stratygrafia mikrofaunistyczna górnej kredy rowu Nysy (Sudety środkowe) [Stratigraphy based upon Foraminifera of Upper Cretaceous deposits, Nysa Graben, Central Sudetes]. Rocznik PTG 45, 81-136. (in Polish, with English summary)Google Scholar

  • Teisseyre, B., 1992. Otwornice kredy górnej z niecki północnosudeckiej (Sudety Zachodnie) [Upper Cretaceous foraminifers from the North Sudetic Basin (Western Sudetes)]. Acta Universitatis Wratislaviensis, Prace Geologiczno-Mineralogiczne 34, 1-78. (in Polish, with English summary)Google Scholar

  • Tibuleac, P. 2008. Presence of big size ammonites in the Jurassic olistoliths of Transylvanian Nappe(s) from Rasău Syncline (eastern Carpathians, Romania). Acta Palaeontologica Romaniae 6, 365-374.Google Scholar

  • Trbušek, J., 1999. Upper Cretaceous sharks and rays from the Prokop opencast mine at Březina near Moravská Třebová. Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium, Geologica 36, 51-61.Google Scholar

  • Trussell, G. C. & Smith, L. D., 2000. Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proceedings of the National Academy of Sciences 97, 2123-2127.Google Scholar

  • Tsujita, C. T. & Westermann, G. E. G., 1998. Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 144, 135-160.CrossrefGoogle Scholar

  • Twitchett, R. J. & Wignall, P. B., 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 124, 137-151.Google Scholar

  • Uchman, A., Bąk, K. & Rodríguez-Tovar, F. J., 2008. Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian-Turonian boundary): an example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 262, 61-71.Google Scholar

  • Uličný, D., 2001. Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strike-slip setting: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 48, 599-628.CrossrefGoogle Scholar

  • Uličný, D., Hladíková, J., Attrep Jr., M. S., Čech, S., Hradecká, L. & Svobodová, M., 1997. Sea-level changes and geochemical anomalies across the Cenomanian-Turonian boundary: Pecínov quarry, Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 265-285.Google Scholar

  • Vodrážka, R., Sklenář, J., Čech, S., Laurin, J. & Hradecká, L. 2009. Phosphatic intraclasts in shallow-water hemipelagic strata: a source of palaeoecological, taphonomic and biostratigraphic data (Upper Turonian, Bohemian Cretaceous Basin). Cretaceous Research 30, 204-222.CrossrefGoogle Scholar

  • Walaszczyk, I., 1988. Inoceramid stratigraphy of the Turonian and Coniacian strata in the environs of Opole (Southern Poland). Acta Geologica Polonica 38, 51-61.Google Scholar

  • Walaszczyk, I., 1992. Turonian through Santonian deposits of the central Polish uplands; their facies development, inoceramid paleontology and stratigraphy. Acta Geologica Polonica 42, 1-122.Google Scholar

  • Walaszczyk, I. & Wood, Ch.J., 1998. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, Lower Saxony, Germany, and the Słupia Nadbrzeżna section, central Poland. Acta Geologica Polonica 48, 395-434.Google Scholar

  • Walaszczyk, I., Kopaevich, L. F. & Olferiev, G., 2004a. Inoceramid/foraminiferal succession of the Turonian and Coniacian (Upper Cretaceous) of the Briansk region (central European Russia). Acta Geologica Polonica 54, 597-609.Google Scholar

  • Walaszczyk, I., Marcinowski, R., Praszkier, T., Dembicz, K. & Bieńkowska, M., 2004b. Biogeographical and stratigraphical significance of the latest Turonian and Early Coniacian inoceramid/ammonite succession of the Manasoa section on the Onilahy River, south-west Madagascar. Cretaceous Research 25, 543-576.CrossrefGoogle Scholar

  • Wetzel, A. & Reisdorf, A. G., 2007. Ichnofabrics elucidate the accumulation history of a condensed interval containing a vertically emplaced ichthyosaur skull. [In:] G. Bromley, L. A. Buatois, G. Mángano, J. F. Genise & R. N. Melchor (Eds): Sediment-organism interactions: a multifaceted ichnology. SEPM Special Publications 88, 241-251.Google Scholar

  • Wetzel, A. & Uchman, A., 2001. Sequential colonization of muddy turbidites in the Eocene Beloveža Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 171-186.Google Scholar

  • Wetzel, A., Tjallingii, R. & Wiesner, M. G., 2011. Bioturbational structures record environmental changes in the upwelling area off Vietnam (South China Sea) for the last 150,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 256-267.Google Scholar

  • Wiedman, D., 1989. Fossilien aus dem Turon des Teutoburger Waldes aus der Sammlung Dietrich Wiedmann, Hannover. Zeitschrift für Amateur-Paläontologen (Arbeitskreis Pälaontologie Hannover) 6, 141-147.Google Scholar

  • Wiese, F. & Kaplan, U., 2001. The potential of the Lengerich section (Münster Basin, northern Germany) as a possible candidate Global Boundary Stratotype Section and Point (GSSP) for the Middle/Upper Turonian boundary. Cretaceous Research 22, 549-563.CrossrefGoogle Scholar

  • Wiese, F. & Voigt, S., 2002. Late Turonian (Cretaceous) climate cooling in Europe: faunal response and possible causes. Geobios 35, 65-77.CrossrefGoogle Scholar

  • Wiese, F., Čech, S., Ekrt, B., Košťák, M., Mazuch, M. & Voigt, S., 2004. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretaceous Research 25, 329-352.CrossrefGoogle Scholar

  • Witwicka, E., 1958. Micropalaeontological stratigraphy of Upper Cretaceous of the Chełm Borehole (Lublin Upland). Biuletyn Instytutu Geologicznego 121, 177-267.Google Scholar

  • Wojewoda, J., 1997. Upper Cretaceous litoral-to-shelf succession in the Intrasudetic Basin and Nysa Trough, Sudety Mountains. [In:] J. Wojewoda (Ed.): Obszary źródłowe: Zapis w osadach. WIND, Wrocław, 81-96.Google Scholar

  • Wojewoda, J., 2004. Skamieniałości śladowe w płytkowodnych osadach santonu na obszarze rowu Górnej Nysy Kłodzkiej [Trace fossils in the shallow deposits of the Upper Nysa Kłodzka Graben]. [In:] J. Muszer (Ed): Zapis paleontologiczny jako wskaźnik paleośrodowisk (Wrocław), 95-96.Google Scholar

  • Woods, M. A., 2007. Chalk Group macrofossils from the Basingstoke (Sheet 284) and Aldershot (Sheet 285) districts. British Geological Survey, Geology & Landscape, Southern Britain Programme, Open Raport OR/07/07, 1-18.Google Scholar

  • Wroński, J., 1981. Szczegółowa mapa geologiczna Sudetów w skali 1: 25 000, arkusz Bystrzyca Kłodzka [Detailed geological map of the Sudety Mountains, Bystrzyca Kłodzka sheet]. Wydawnictwa Geologiczne, Warszawa.Google Scholar

  • Wroński, J. & Cwojdziński, S., 1984. Objaśnienia do szczegółowej mapy geologicznej Sudetów, Arkusz Bystrzyca Kłodzka [Explanations to the geological map of the Sudetes, Bystrzyca Kłodzka sheet]. Wydawnictwa Geologiczne, Warszawa, 5-67.Google Scholar

  • Yacobucci, M. M., 2004. Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretaceous Research 25, 927-944.CrossrefGoogle Scholar

  • Zakharov, Y. D., Melnikov, M. E., Popov, A. M., Pletnev, S. P., Khudik, V. D. & Punina, T. A., 2012. Cephalopod and brachiopod fossils from the Pacific: evidence from the Upper Cretaceous of the Magellan Seamounts. Geobios 45, 145-156.CrossrefGoogle Scholar

  • Żelaźniewicz, A. & Aleksandrowski, P., 2008. Regionalizacja tektoniczna Polski - Polska południowo-zachodnia [Tectonic subdivision of Poland: southwestern Poland]. Przegląd Geologiczny 56, 904-911. (in Polish, with English summary)Google Scholar

  • Zonova, T. D. & Yazykowa, E. A., 1998. Biostratigraphy and correlation of the Turonian-Coniacian boundary problem in the Far East Russia based on ammonites and inoceramids. Acta Geologica Polonica 48, 483-494.Google Scholar

  • Zonneveld, J.-P., Gingras, M.-K. & Beatty, T.-W., 2010. Diverse ichnofossil assemblages following the P-T mass extinction, Lower Triassic, Alberta and British Columbia, Canada: evidence for shallow marine refugia on the northwestern coast of Pangea. Palaios 25, 368-392.CrossrefGoogle Scholar

About the article


Published Online: 2012-08-09

Published in Print: 2012-08-01


Citation Information: Geologos, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/v10118-012-0007-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mohamed Benzaggagh, Mohamed Oumhamed, Bruno Ferré, and Jean-Louis Latil
Cretaceous Research, 2017, Volume 74, Page 109

Comments (0)

Please log in or register to comment.
Log in