Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologos

The Journal of Adam Mickiewicz University

3 Issues per year


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Open Access
Online
ISSN
2080-6574
See all formats and pricing
More options …

Heavy minerals as a tool to reconstruct river activity during the Weichselian glaciation (Toruń Basin, Poland)

Piotr Weckwerth / Marek Chabowski
Published Online: 2013-05-31 | DOI: https://doi.org/10.2478/logos-2013-0003

Abstract

The heavy-mineral composition of the Weichselian fluvial successions deposited by an ephemeral meandering river and by a sand-bed braided river in the Toruń Basin (central Poland) was analysed. On the basis of a lithofacies analysis, in combination with the composition of the heavy-mineral assemblages, the fluvial processes and river-channel morphology were reconstructed. This allows determining the provenance of the fluvial deposits and the rivers’ discharge regimes. A model is proposed which can explain the changes in the amount of individual minerals in the fluvial sediments of different ages under the conditions of the oscillating Scandinavian ice sheet. The model assumes that, during the ice-sheet advances, the proglacial streams supplied large amounts of heavy minerals that were less resistant to mechanical abrasion. During the main phase of the ice-sheet retreat, the distance between the ice sheet and the Toruń Basin increased, and the amount of non-resistant minerals diminished as a result of sediment reworking in proglacial rivers. Due to the unique location of the Toruń Basin at the front of the Scandinavian ice sheet during the Weichselian glaciation, the heavy-mineral assemblages in the fluvial deposits form a valuable tool for the recognition of the ice-sheet extent.

Keywords: heavy minerals; ice-marginal valley; river-discharge regime; channel-pattern transformation; Toruń Basin; Weichselian

  • Alexander, J., Bridge, J.S., Cheelà, R.J. & Leclair, S.F., 2001. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology 48, 133-152.CrossrefGoogle Scholar

  • Ashworth, P.J., Best, J.L., Roden, J.E., Bristow, C.S. & Klaassen, G.J., 2000. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology 47, 533-555.CrossrefGoogle Scholar

  • Ashworth, P.J., Sambrook Smith, G.H., Best, J.L., Bridge, J.S., Lane, S.N., Lunt, I.A., Reesink, A.J.H., Simpson, C.J. & Thomas, R.E., 2011. Evolution and sedimentology of a channel fill in the sandy braided South Saskatchewan River and its comparison to the deposits of an adjacent compound bar. Sedimentology 58, 1860-1883.CrossrefGoogle Scholar

  • Bateman, R.M. & Cat, J.A., 2007. Provenance and palaeoenvironmental interpretation of superficial deposits, with Particular reference to post-depositional modification of heavy mineral assemblages. [In:] M.A. Mange & D.T. Wright (Eds): Heavy minerals in use. Developments in Sedimentology 58, 151-188.Google Scholar

  • Bridge, J.S., 1993. The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. [In:] J.L. Best & C.S. Bristow (Eds): Braided rivers. Geological Society Special Publication 75, 13-71.CrossrefGoogle Scholar

  • Bridge, J.S., 2003. Rivers and floodplains: forms, processes,and sedimentary record. Blackwell Publishing, Oxford, 504 pp.Google Scholar

  • Brykczyński, M., 1986. O głównych kierunkach rozwoju sieci rzecznej Niżu Polskiego w czwartorzędzie [On the main directions of the development of the Polish lowland river network in the Quaternary]. PrzeglądGeograficzny 58, 411-440.Google Scholar

  • Busschers, F.S., Weerts, H.J.T., Wallinga, J., Kasse, C., Cleveringa, P., De Wolf, H. & Cohen, K.M., 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits - fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences 84, 25-41.Google Scholar

  • Cant, D.J. & Walker, R.G., 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25, 625-648.CrossrefGoogle Scholar

  • Church, M., 1988. Floods in cold climates. [In:] V.R. Baker, R.C. Kochel & P.C. Patton (Eds): Flood Geomorphology. Wiley, New York, 205-231.Google Scholar

  • Clemens, K.E. & Komar, P.D., 1988. Oregon beach sand compositions produced by the mixing of sediments under a transgressing sea. Journal of Sedimentary Petrology 58, 519-529.CrossrefGoogle Scholar

  • Cordier, S., Harmand, D., Frechen, M. & Beiner, M., 2006. Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris Basin and Rhenish Massif). QuaternaryScience Reviews 25, 1460-1474.Google Scholar

  • Eyles, N., Eyles, C.H. & Miall, A.D., 1983. Lithofacies types and vertical profile models; an alternative approach to the description and environmental inter pretation of glacial diamict and diamictite sequences. Sedimentology 30, 393-410.CrossrefGoogle Scholar

  • Fletcher, W.K., Church, M. & Wolcott, J., 1992. Fluvial- transport equivalence of heavy minerals in the sand size range. Canadian Journal of Earth Sciences 29, 2017-2021.CrossrefGoogle Scholar

  • Folk, R.L. & Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal ofSedimentary Petrology 27, 3-26.CrossrefGoogle Scholar

  • Galon, R., 1961. Morphology of the Noteć-Warta (or Toruń- Eberswalde) ice marginal streamway. Prace GeograficzneIGiPZ PAN 29, 1-129.Google Scholar

  • Galon, R., 1968. New facts and problems pertaining to the origin of the Noteć Warta Pradolina and the valleys linked with it. Przegląd Geograficzny 40, 307-315.Google Scholar

  • Gorrell, G. & Shaw, J., 1991. Deposition in an esker, bead and fan complex, Lenark, Ontario, Canada. SedimentaryGeology 72, 285-314.Google Scholar

  • Górska, M., 2006. Wybrane cechy teksturalne glin lodowcowych i osadów wodnolodowcowych fazy pomorskiej pólnocno-wschodnich Niemiec [Some textural features of till and fluvioglacial deposits of the Pomeranian Phase in north-eastern Germany]. PrzeglądGeograficzny 78, 69-89.Google Scholar

  • Haldorsen, S., Jørgensen, P., Rappol, M. & Riezebos, P.A., 1989. Composition and source of the clay-sized fraction of Saalian till in The Netherlands. Boreas 18, 89-97.Google Scholar

  • Huisink, M., 2000. Changing river styles in response to Weichselian climate changes in the Vecht valley, eastern Netherlands. Sedimentary Geology 133, 115-134.CrossrefGoogle Scholar

  • Kasse, C., Bohncke, S. & Vandenberghe, J., 1995. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian with special reference to the Hengelo Interstadial. Mededelingen Rijks GeologischeDienst 52, 387-413.Google Scholar

  • Kasse, C., Vandenberghe, J., De Corte, F. & van den Haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Sciences 22, 695-708.Google Scholar

  • Kasse, C., Vandenberghe, J., van Huissteden, J., Bohncke, S.J.P. & Bos, J.A.A., 2003. Sensitivity of Weichselian fluvial systems to climate change (Nochten mine, eastern Germany). Quaternary Sciences Review 22, 2141-2156.CrossrefGoogle Scholar

  • Kenig, K., Jochemczyk, L. & Trzepla, M., 2006. Litogeneza piaszczystych osadów międzymorenowych w środkowej części Pojezierza Chełmińskiego [Lithogenesis of intertill sand deposits from the central part of the Chełmno Lakeland]. Przegląd Geologiczny 54, 807-814.Google Scholar

  • Komar, P.D., 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. [In:] M.A. Mange & D.T. Wright (Eds): Heavy minerals in use. Developments in Sedimentology 58, 3-48.Google Scholar

  • Kozarski, S., 1988. Origin of pradolinas: a discussion of mistaken ideas. Zeitschrift für Gletscherkunde und Glazialgeologie 24, 75-92.Google Scholar

  • Krzyszkowski, D., 1990. Middle and late Weichselian stratigraphy and palaeoenvironments in central Poland. Boreas 19, 333-350.Google Scholar

  • Krzyszkowski, D., 1995. An outline of the Pleistocene stratigraphy of the Kleszczów Graben (Bełchatów outcrop), central Poland. Quaternary Science Reviews 14, 61-83.CrossrefGoogle Scholar

  • Krzyszkowski, D., 1996. Climatic control on Quaternary fluvial sedimentation in the Kleszczów Graben, central Poland. Quaternary Science Reviews 15, 315-333.CrossrefGoogle Scholar

  • Lee, J.R., Rose, J., Hamblin, R.J.O. & Moorlock, B.S.P., 2004. Dating the earliest lowland glaciation of eastern England: a pre-MIS 12 early Middle Pleistocene Happisburgh Formation glaciation. Quaternary Science Reviews 23: 1551-1566.CrossrefGoogle Scholar

  • Lindner, L., Lamparski, Z. & Dąbrowski, S., 1982. River valleys of Mazovian interglacial in eastern Central Europe. Acta Geologica Polonica 32, 179-190.Google Scholar

  • Lowright, R., Williams, E.G. & Dachille, F., 1972. An analysis of factors controlling deviations in hydraulic equivalence in some modern sands. Journal of SedimentaryPetrology 44, 635-645.Google Scholar

  • Ludwikowska-Kędzia, M., 2013. The composition of transparent heavy minerals in Quaternary sediments of the Kielce-Łagów valley (Holy Cross Mountains, Poland). Geologos 19 (this issue), 95-129.Google Scholar

  • Makowska, A., 1979. Interglacjał eemski w Dolinie Dolnej Wisły [Eemian interglacial in valley of lower Vistula River]. Studia Geologica Polonica 63, 1-90.Google Scholar

  • Makowska, A., 1980. Late Eemian with preglacial and glacial part of Vistulian Glaciation in Lower Vistula Region. Quaternary Studies in Poland 2, 37-56.Google Scholar

  • Mange, M.A. & Maurer, H.F.W., 1992. Heavy minerals incolour. Chapman and Hall, London, 147 pp.Google Scholar

  • Marcinkowski, B., 2007. Wykorzystanie składu mineralnego i morfologii ziaren minerałów ciężkich do określania środowiska sedymentacyjnego [Application of the mineral content and grain morphology of heavy minerals to interpret the sedimentary environment]. Przegląd Geologiczny 55, 1-207.Google Scholar

  • Marcinkowski, B. & Mycielska-Dowgiałło, E., 2013. Heavy-mineral analysis in Polish investigations of Quaternary deposits: a review. Geologos 19 (this issue), 5-23.Google Scholar

  • Miall, A.D., 1978. Lithofacies types and vertical profile models in braided rivers: a summary. [In:] A.D. Miall (Ed.): Fluvial Sedimentology. Canadian Society of PetroleumGeologists, Memoir 5, 597-604.Google Scholar

  • Miall, A.D., 2006. The geology of fluvial deposits. Sedimentaryfacies, basin analysis, and petroleum geology. Springer, Berlin, 598 pp.Google Scholar

  • Mol, J., Vandenberghe, J. & Kasse, C., 2000. River response to variations of periglacial climate in mid-latitude Europe. Geomorphology 33, 131-148.CrossrefGoogle Scholar

  • Mol, J., 1997. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). Journal ofQuaternary Science 12, 43-60.CrossrefGoogle Scholar

  • Molewski, P., 2007. Neotektoniczne i glacidynamiczne uwarunkowaniawykształcenia plejstocenu Wysoczyzny Kujawskiej [Neotectonic and glacidynamic conditions of theformation of the Pleistocene of the Kujawy moraine plateau]. Nicolas Copernicus University, Toruń, 139 pp.Google Scholar

  • Morton, A.C. & Hallsworth, C.R., 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology 124, 3-29.CrossrefGoogle Scholar

  • Morton, A., Hounslow, M.W. & Frei, D., 2013. Heavy-mineral, mineral-chemical and zircon-age constraints on the provenance of Triassic sandstones from the Devon coast, southern Britain. Geologos 19 (this issue), 67-85.Google Scholar

  • Niewiarowski, W., 1968. Morfologia i rozwój pradoliny i doliny dolnej Drwęcy [Morphology and evolution of the pradolina and valley of the Drwęca River]. StudiaSocietatis Scientiarum Torunensis 6, 132 pp.Google Scholar

  • Niewiarowski, W., 1969. The relation of the Drwęca valley to the Noteć-Warta (Toruń-Eberswalde) Pradolina and its role in the glacial and lateglacial drainage system. Geographia Polonica 17, 173-188.Google Scholar

  • Popp, S., Belolyubsky, I., Lehmkuhl, F., Prokopiev, A., Siegert, C., Spektor, V., Stauch, G. & Diekmann, B., 2007. Sediment provenance of Late Quaternary morainic, fluvial and loess-like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions. Geological Journal 42, 477-497.CrossrefGoogle Scholar

  • Racinowski, R., 1995. Analiza minerałów ciężkich w badaniach osadów czwartorzędowych Polski [Remarks on the use of results of heavy-mineral analysis for studies on Quaternary sediments of Poland]. [In:] E. Mycielska-Dowgiałło & J. Rutkowski (Eds): Badaniaosadów czwartorzędowych. Wybrane metody i interpretacjawyników [Investigation of Quaternary sediments. Somemethods and interpretation of the results]. WGiSR UW, Warszawa, 151-166.Google Scholar

  • Racinowski, R., 2000. Niektóre problemy interpretacji wyników analiz minerałów ciężkich w badaniach osadów czwartorzędowych [Some aspects of the interpretation of the results of heavy-mineral analyses in the research of Quaternary deposits]. Przegląd Geologiczny 48, 354-359.Google Scholar

  • Racinowski, R., 2010. Główne przezroczyste minerały ciężkie w osadach czwartorzędowych Polski [Main transparent heavy minerals in Quaternary deposits]. Biuletyn PIG 438, 99-106.Google Scholar

  • Rappol, M. & Stoltenberg, H.M.P., 1985. Compositional variability of Saalien till in The Netherlands and its origin. Boreas 14, 33-50.Google Scholar

  • Russell, H.A.J., Sharpe, D.R. & Bajc, A.F., 2007. Sedimentary signatures of the Waterloo Moraine, Ontario, Canada. [In:] M.J. Hambrey, P. Christoffersen, N.F. Glasser & B. Hubbard (Eds): Glacial sedimentary processes and products. International Association of SedimentologistsSpecial Publication 39, 85-108.Google Scholar

  • Sambrook Smith, G.H., Ashworth, P.J., Best, J.L., Woodward, J. & Simpson C.J., 2006. The sedimentology and alluvial architecture of the sandy braided South Saskatchewan River, Canada. Sedimentology 53, 413-434.CrossrefGoogle Scholar

  • Toucanne, S., Zaragosi, S., Bourillet, J.F., Gibbard, P.L., Eynaud, F., Giraudeau, J., Turon, J.L., Cremer, M., Cortijo, E., Martinez, P. & Rossignol, L., 2009. A 1.2 Ma record of glaciation and fluvial discharge from the West European Atlantic margin. Quaternary ScienceReviews 28, 2974-2981.Google Scholar

  • Van Huissteden, J., 1990. Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the middle Pleniglacial in Twente, Eastern Netherlands. Mededelingen Rijks Geologische Dienst 44, 3-138.Google Scholar

  • Van Huissteden, J., Gibbard, P.L. & Briant, R.M., 2001. Periglacial fluvial systems in northwest Europe during marine isotope stages 4 and 3. Quaternary International 79, 75-88.CrossrefGoogle Scholar

  • Van Huissteden, J. & Kasse, C., 2001. Detection of rapid climate change in Last Glacial fluvial successions in The Netherlands. Global and Planetary Change 28, 319-339.CrossrefGoogle Scholar

  • Vandenberghe, J., 1995. Timescales, climate and river development. Quaternary Science Reviews 14, 631-638.CrossrefGoogle Scholar

  • Vandenberghe, J., 2001. A typology of Pleistocene coldbased rivers. Quaternary International 79, 111-121.CrossrefGoogle Scholar

  • Vandenberghe, J., 2002. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International 91, 17-23.CrossrefGoogle Scholar

  • Vandenberghe, J., 2003. Climate forcing of fluvial system development: an evolution of ideas. Quaternary ScienceReviews 22, 2053-2060.Google Scholar

  • Wachecka-Kotkowska, L. & Ludwikowska-Kędzia, M., 2013. Heavy-mineral assemblages from fluvial Pleniglacial deposits of the Piotrków Plateau and the Holy Cross Mountains - a comparative study. Geologos 19 (this issue), 131-146.Google Scholar

  • Weckwerth, P., 2009. Środowisko depozycji fluwialnej w stadiale głównym zlodowacenia Wisły - stanowisko Nowe Dąbie, południowo-zachodnia część Kotliny Toruńskiej [Fluvial depositional environment of the main stadial of the Weichselian glaciation - Nowe Dąbie pit, SW part of the Toruń Basin]. [In:] M. Pisarska- Jamroży & Z. Babiński (Eds): Plejstoceńskie środowiskasedymentacyjne Pojezierza Pomorskiego [Pleistocenesedimentary environments of Pomeranian Lakeland]. Wydawnictwo UKW, Bydgoszcz, 90-99.Google Scholar

  • Weckwerth, P., 2010. Evolution of the Toruń Basin in the Late Weichselian. Landform Analysis 14, 57-84.Google Scholar

  • Weckwerth, P., 2011. Palaeoslopes of Weichselian sandbed braided rivers in the Toruń Basin (Poland): results of palaeohydraulic analysis. Geologos 17, 227-238.Google Scholar

  • Weckwerth, P., 2013. Procesy fluwialne toruńskiego basenusedymentacyjnego podczas zlodowacenia wisły [Fluvialprocesses of the Toruń sedimentary basin during theWeichselian glaciation]. Nicolaus Copernicus University, Toruń (in press).Google Scholar

  • Weckwerth, P., Przegiętka, K., Chruścińska, A. & Pisarska- Jamroży, M., 2013. The relation between optical bleaching and sedimentological features of fluvial deposits in the Toruń Basin (Poland). Geological Quarterly 57, 31-44.Google Scholar

  • Weckwerth, P., Przegiętka, K., Chruścińska, A., Woronko, B. & Oczkowski, H.L., 2011. Age and sedimentological features of fluvial series in the Toruń Basin and the Drwęca valley (Poland). Geochronometria 38, 397-412.CrossrefGoogle Scholar

  • Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30, 377-392.CrossrefGoogle Scholar

  • Westaway, R. & Bridgland, D., 2010. Causes, consequences and chronology of large-magnitude palaeoflows in Middle and Late Pleistocene river systems of northwest Europe. Earth Surface Processes and Landforms 35, 1071-1094.CrossrefGoogle Scholar

  • Woronko, B., Rychel, J., Karasiewicz, M.T., Ber, A., Krzywicki, T., Marks, L. & Pochocka-Szwarc, K., 2013. Heavy and light minerals as a tool for reconstruction of depositional environments: an example from the Jałówka site (northern Podlasie region, NE Poland). Geologos 19 (this issue), 47-66.Google Scholar

  • Wysota, W., 2002. Stratygrafia i środowiska sedymentacjizlodowacenia wisły w południowej części dolnego Powiśla[Stratigraphy and sedimentary environments of the Weichselianglaciation in the southern part of the Lower Vistularegion]. Nicolas Copernicus University, Toruń, 144 pp.Google Scholar

  • Wysota W., Lankuaf, K.R., Molewski, P. & Szmańda, J., 1996. Sedymentologia interstadialnej serii rzecznej (Rzęczkowo) zlodowacenia Wisły (Vistulian) odsłoniętej w SW krawędzi Wysoczyzny Chemińskiej [Sedimentology of the interstadial fluvial succession (Rzęczkowo) of the Vistulian glaciations exposed in the SW margin of the Chełmno moraine plateau]. ActaUniversitatis Nicolai Copernici, Geografia 28, 39-63.Google Scholar

  • Wysota, W., Molewski, P. & Sokołowski, R.J., 2009. Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland. Quaternary International 207, 26-41.CrossrefGoogle Scholar

  • Zieliński, T., 1995. Kod litofacjalny i litogenetyczny - konstrukcja i zastosowanie [Lithofacies and genetic codes: construction and application]. [In:] E. Mycielska- Dowgiałło & J. Rutkowski (Eds): Badania osadówczwartorzędowych [Investigation of Quaternary sediments]. Warsaw University Press, Warszawa, 220-235.Google Scholar

  • Zieliński, T., 1998. Litofacjalna identyfikacja osadów rzecznych [Lithofacies identification of alluvial sediments]. [In:] E. Mycielska-Dowgiałło (Ed.): Strukturysedymentacyjne i postsedymentacyjne w osadach czwartorzędowychi ich wartość interpretacyjna [Sedimentary andpostsedimentary structures in Quaternary sediments andtheir significance for interpretations]. Warsaw University Press, Warszawa, 195-257.Google Scholar

  • Zieliński, T., 2007. The Pleistocene climate-controlled fluvial sedimentary record in the Bełchatów mine (central Poland). Sedimentary Geology 193, 203-209.CrossrefGoogle Scholar

  • Zieliński, T. & Pisarska-Jamroży, M., 2012. Jakie cechy litologiczne warto kodować, a jakie nie? [Which features of deposits should be included in a code and which not?]. Przegląd Geologiczny 60, 387-397. Google Scholar

About the article

Published Online: 2013-05-31

Published in Print: 2013-05-01


Citation Information: Geologos, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/logos-2013-0003.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Edyta Kalińska-Nartiša and Māris Nartišs
Baltica, 2017, Volume 30, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in