Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologos

The Journal of Adam Mickiewicz University

3 Issues per year


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Open Access
Online
ISSN
2080-6574
See all formats and pricing
More options …

Heavy-mineral, mineral-chemical and zircon-age constraints on the provenance of Triassic sandstones from the Devon coast, southern Britain

Andrew Morton
  • Corresponding author
  • HM Research Associates, 2 Clive Road, Balsall Common, CV7 7DW, UK and CASP, University of Cambridge, Cambridge CB3 0DH, United Kingdom
  • Email:
/ Mark W. Hounslow
  • Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, United Kingdom
/ Dirk Frei
  • Central Analytical Facility, Stellenbosch University, Chamber of Mines Building, Matieland 7602, South Africa
Published Online: 2013-05-31 | DOI: https://doi.org/10.2478/logos-2013-0005

Abstract

An integrated heavy-mineral, mineral-chemical and zircon-dating study of the Triassic succession exposed on the south Devon coast, in the western part of the Wessex Basin, indicates derivation from a combination of granitic and metasedimentary lithologies of ages of mostly over 550 Ma. These sources were probably located at a relatively proximal location near the southern margin of the basin. Derivation from more distal sources in the Armorican Massif or local Variscan sources to the west appears unlikely in view of the scarcity of Permo-Carboniferous (Variscan-age) zircons. The Budleigh Salterton Pebble Bed Formation was derived from a different combination of source lithologies than the Otter Sandstone Formation, the former including staurolite-grade metasediments that were absent in the catchment area of the Otter Sandstone. The Devon coast succession has provenance characteristics that differ from equivalent sandstones further east in the Wessex Basin, and from sandstones in the East Irish Sea Basin to the north. These differences indicate that sediment supply patterns to the linked Triassic basin systems in southern Britain are complex, involving multiple distinct sub-catchment areas, and that heavy-mineral studies have considerable potential for unravelling these sub- -catchment area sources.

Keywords : heavy minerals; zircon; provenance; Triassic; Devon

  • Audley-Charles, M.G., 1970. Triassic palaeogeography of the British Isles. Quarterly Journal of the Geological Societyof London 126, 49-89.Google Scholar

  • Ballèvre, M., Bosse, V., Ducassou, C. & Pitra, P., 2009. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. ComptesRendus de Géoscience 341, 174-201.Google Scholar

  • Brown, M. & Dallmeyer, R.D., 1996. Rapid Variscan exhumation and the role of magma in core complex formation: southern Brittany metamorphic belt, France. Journal of Metamorphic Geology 14, 361-379.CrossrefGoogle Scholar

  • Brun, J.P., Guennoc, P., Truffert, C., Vairon, J. & The ARMOR Working Group of the GeoFrance 3-D Program, 2001. Cadomian tectonics in northern Brittany: a contribution of 3-D crustal-scale modelling. Tectonophysics 331, 229-246.Google Scholar

  • Butler, M., 1998. The geological history and the southern Wessex Basin - a review of new information from oil exploration. [In:] J.R. Underhill (Ed.): Development, evolution and petroleum geology of the Wessex Basin. Geological Society of London, Special Publication 133, 67-86.Google Scholar

  • Calvez, J.Y. & Vidal, P., 1978. Two billion year old relicts in the Hercynian Belt of western Europe. Contributionsto Mineralogy and Petrology 65, 395-399.Google Scholar

  • Campbell-Smith, W., 1963. Description of the igneous rocks represented among pebbles from the Bunter Pebble Beds of the Midlands of England. Bulletin of theBritish Museum of Natural History (Mineralogy) 2, 1-17.Google Scholar

  • Catalán, J.R.M., Fernández-Suárez, J., Jenner, G.A., Belousova, E. & Montez, A.D., 2004. Provenance constraints from detrital zircon U-Pb ages in the NW Iberian Massif: implications for Palaeozoic plate configuration and Variscan evolution. Journal of the GeologicalSociety 161, 463-476.Google Scholar

  • Cocks, L.R.M., 1993. Triassic pebbles, derived fossils and the Ordovician to Devonian palaeogeography of Europe. Journal of the Geological Society 150, 219-226.Google Scholar

  • Dinis, P., Andersen, T., Machado, G. & Guimarães, F., 2012. Detrital zircon U-Pb ages of a late-Variscan Carboniferous succession associated with the Porto- Tomar shear zone (West Portugal): provenance implications. Sedimentary Geology 273/274, 19-29.Google Scholar

  • Edmonds, E.A. & Williams, B.J., 1985. Geology of the countryaround Taunton and the Quantock Hills - Memoir for1:50,000 geological sheet 295 (England and Wales). British Geological Survey, HMSO, London.Google Scholar

  • Edwards, R.A., 1999. The Minehead district: a concise accountof the geology - Memoir for 1:50,000 geological sheet278 and part of sheet 294 (England and Wales). British Geological Survey, HMSO, London.Google Scholar

  • Edwards, R.A., Warrington, G., Scrivener, R.C., Jones, N.S., Haslam, H.W. & Ault, L., 1997. The Exeter Group, south Devon, England: a contribution to the early post-Variscan stratigraphy of northwest Europe. Geological Magazine 134, 177-197.Google Scholar

  • Fitch, F.J., Miller, J.A. & Thompson, D.B., 1966. The palaeogeographic significance of isotopic age determinations on detrital micas from the Triassic of the Stockport-Macclesfield district, Cheshire, England. Palaeogeography, Palaeoclimatology, Palaeoecology 2, 281-312.CrossrefGoogle Scholar

  • Frei, D. & Gerdes, A., 2009. Precise and accurate in-situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261, 261-270.Google Scholar

  • Galehouse, J.S., 1971. Point-counting. [In:] R.E. Carver (Ed.): Procedures in sedimentary petrology. Wiley-Interscience, New York, 385-407.Google Scholar

  • Gallois, R.W., 2004. The type section of the junction of the Otter Sandstone Formation and the Mercia Mudstone Group (mid Triassic) at Pennington Point, Sidmouth. Geoscience in south-west England 11, 51-58.Google Scholar

  • Gerdes, A. & Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany. Earth and Planetary ScienceLetters 249, 47-61.Google Scholar

  • Guerrot, C. & Peucat, J.J., 1990. U-Pb geochronology of the Upper Proterozoic Cadomian orogeny in the northern Armorican Massif, France. [In:] D’Lemos, R.S., Strachan, R.A. & Topley, C.C. (Eds): The Cadomian orogeny. Geological Society, London, Special Publications 51, 13-26.CrossrefGoogle Scholar

  • Hallsworth, C.R., Morton, A.C., Claoué-Long, J. & Fanning, C.M., 2000. Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sedimentary Geology 137, 147-185.Google Scholar

  • Henry, D.J. & Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. AmericanMineralogist 70, 1-15.Google Scholar

  • Holloway, S., Milodowski, A.E., Strong, G.E. & Warrington, G., 1989. The Sherwood Sandstone Group of the Wessex Basin, southern England. Proceedings of the GeologistsAssociation 100, 383-394.Google Scholar

  • Hounslow, M.W. & Ruffell, A.H., 2006. Triassic: seasonal rivers, dusty deserts and saline lakes. [In:] P.J. Brenchley & P.F. Rawson (Eds): Geology of England and Wales. Geological Society, London, 295-324.Google Scholar

  • Hounslow, M.W. & McIntosh, G., 2003. Magnetostratigraphy of the Sherwood Sandstone Group (Lower and Middle Triassic), South Devon, UK: detailed correlation of the marine and non-marine Anisian. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 325-348.Google Scholar

  • Inglis, J.D., Samson, S.D., D’Lemos, R.S. & Hamilton, M., 2004. U-Pb geochronological constraints on the tectonothermal evolution of the Paleoproterozoic basement of Cadomia, La Hague, NW France. PrecambrianResearch 134, 293-315.Google Scholar

  • Jackson, S., Pearson, N., Griffin, W. & Belousova, E., 2004. The application of laser ablation - inductively coupled plasma - mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.Google Scholar

  • Jeans, C.V., Reed, S.J.B. & Xing, M., 1993. Heavy mineral stratigraphy in the UK Trias: western approaches, onshore England and the central North Sea. [In:] J.R. Parker (Ed.): Petroleum geology of Northwest Europe -Proceedings of the 4th Conference. Geological Society, London, 609-624.Google Scholar

  • Jones, D.G., Morton, A.C., Leng, M.J., Haslam, H.W., Milodowski, A.E., Strong, G.E. & Kemp, S.J., 2000. Provenance of the basin fill. [In:] J.A. Plant, D.G. Jones & H.W. Haslam (Eds): The Cheshire Basin: basin evolution,fluid movement and mineral resources in a Permo-Triasrift setting. British Geological Survey, Keyworth, UK, 90-124.Google Scholar

  • Jones, N.S. & Ambrose, K., 1994. Triassic sandy braidplain and aeolian sedimentation in the Sherwood Sandstone Group of the Sellafield area, west Cumbria. Proceedings of the Yorkshire Geological Society 50, 61-76.Google Scholar

  • Leonard, A.J., Moore, A.G. & Selwood, B.E., 1982. Ventifacts from a deflation surface marking the top of the Budleigh Salterton Pebble Beds, east Devon. Proceedingsof the Ussher Society 5, 333-339.Google Scholar

  • Lorsong, J.M. & Atkinson, C.D., 1995. Sedimentology andstratigraphy of Lower Triassic alluvial deposits, East Devoncoast. Excursion guide. Petroleum Group. Geological Society, London.Google Scholar

  • Lott, G.K. & Strong, G.E., 1982. The petrology and petrographyof the Sherwood Sandstone (?Middle Triassic) of theWinterborne Kingston Borehole, Dorset. Report of the Institute of Geological Sciences 81/3, 135-142.Google Scholar

  • Ludwig, K.R., 2003. Isoplot/Ex version 3: a geochronologicaltoolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4.Google Scholar

  • Ludwikowska-Kędzia, M., 2013. The composition of transparent heavy minerals in Quaternary sediments of the Kielce-Łagów valley (Holy Cross Mountains, Poland). Geologos 19 (this issue), 95-129.Google Scholar

  • Mange, M.A. & Maurer, H.F.W., 1992. Heavy minerals in colour. Chapman and Hall, London, 147 pp.Google Scholar

  • Mange, M.A. & Morton, A.C., 2007. Geochemistry of heavy minerals. [In:] M. Mange & D.T. Wright (Eds): Heavy minerals in use. Developments in Sedimentology 58, 345-391.Google Scholar

  • Mange, M., Turner, P., Ince, D., Pugh, J. & Wright, D., 1999. A new perspective on the zonation and correlation of barren strata: an integrated heavy mineral and palaeomagnetic study of the Sherwood Sandstone Group, East Irish Sea Basin and surrounding areas. Journal of Petroleum Geology 22, 325-348.CrossrefGoogle Scholar

  • Marcinkowski, B. & Mycielska-Dowgiałło, E., 2013. Heavy-mineral analysis in Polish investigations of Quaternary deposits: a review. Geologos 19 (this issue), 5-23.Google Scholar

  • Mattinson, J.M., 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275, 186-198.Google Scholar

  • McKie, T. & Williams, B., 2009. Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Geological Journal 44, 711-741.Google Scholar

  • McKie, T., Aggett, J. & Hogg, A.J.C., 1998. Reservoir architecture of the upper Sherwood Sandstone, Wytch Farm field, southern England. [In:] J.R. Underhill (Ed.): Development, evolution and petroleum geology of the Wessex basin. Geological Society, London, SpecialPublications 133, 133-406.Google Scholar

  • Miller, B.V., Samson, S.D. & D’Lemos, R.S., 2001. U-Pb geochronological constraints on the timing of plutonism, volcanism, and sedimentation, Jersey, Channel Islands, UK. Journal of the Geological Society (London) 158, 243-252.Google Scholar

  • Morton, A.C., 2012. Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. [In:] P. Sylvester (Ed.): Quantitative mineralogy and microanalysis of sedimentsand sedimentary rocks. Mineralogical Association of Canada Short Course Series 42, 133-165.Google Scholar

  • Morton, A.C. & Hallsworth, C.R., 1994. Identifying provenance- specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology 90, 241-256.Google Scholar

  • Morton, A.C., Fanning, C.M. & Jones, N.S., 2010. Variscan sourcing of Westphalian (Pennsylvanian) sandstones in the Canonbie Coalfield, UK. Geological Magazine 147, 718-727.Google Scholar

  • Nasdala, L., Hofmeister, W., Norberg, N., Mattinson, J.M., Corfu, F., Dörr, W., Kamo, S.L., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Košler, J., Wan, Y., Götze, J., Häger, T., Kröner, A. & Valley, J.W., 2008. Zircon M257 - a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research 32, 247-265.Google Scholar

  • Preto, N., Kustatscherc, E. & Wignall, P.B., 2010. Triassic climates - state of the art and perspectives. Palaeogeography,Palaeoclimatology, Palaeoecology 290, 1-10.Google Scholar

  • Purvis, K. & Wright, V.P., 1991. Calcretes related to phreatophytic vegetation from the Middle Triassic Otter Sandstone of southwestern England. Sedimentology 38, 539-551.Google Scholar

  • Roach, R.A., Lees, G.J. & Shufflebotham, M.M., 1990. Brioverian volcanism and Cadomian tectonics, Baie de St Brieuc, Brittany: stages in the evolution of a late Precambrian ensialic basin. [In:] R.S. D’Lemos, R.A. Strachan & C.C. Topley (Eds): The Cadomian orogeny. Geological Society, London, Special Publications 51, 41-67.CrossrefGoogle Scholar

  • Ruffell, A. & Shelton, R., 1999. The control of sedimentary facies by climate during phases of crustal extension; examples from the Triassic of onshore and offshore England and Northern Ireland. Journal of the GeologicalSociety 156, 779-789.Google Scholar

  • Samson, S.D. & D’Lemos, R.S., 1998. U-Pb geochronology and Sm-Nd isotopic composition of Proterozoic gneisses, Channel Islands, UK. Journal of the GeologicalSociety 155, 609-618.Google Scholar

  • Samson, S.D., D’Lemos, R.S., Miller, B.V. & Hamilton, M.A., 2005. Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U-Pb ages. Journal of the Geological Society 162, 65-71.Google Scholar

  • Schulmann, K., Schaltegger, U., Jezek, J., Thompson, A.B. & Edel, J.-B., 2002. Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally-weakened and thinned crust (Variscan orogen in western Europe). American Journal ofScience 302, 856-879.Google Scholar

  • Sircombe, K.N., 2004. AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers & Geosciences 30, 21-31.Google Scholar

  • Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N. & Whitehouse, M.J., 2008. Plešovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.Google Scholar

  • Smith, S.A., 1990. The sedimentology and accretionary styles of an ancient gravel-bed stream: the Budleigh Salterton Pebble Beds (Lower Triassic), southwest England. Sedimentary Geology 67, 199-219.Google Scholar

  • Smith, S.A. & Edwards, R.A. 1991. Regional sedimentological variations in Lower Triassic fluvial conglomerates (Budleigh Salterton Pebble Beds), southwest England: some implications for palaeogeography and basin evolution. Geological Journal 26, 65-83.Google Scholar

  • Stacey, J.S. & Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207-221.Google Scholar

  • Steel, R.J. & Thompson, D.B., 1983. Structures and textures in Triassic braided stream conglomerates (‘Bunter’ Pebble Beds) in the Sherwood Sandstone Group, North Staffordshire, England. Sedimentology 30, 341-367.CrossrefGoogle Scholar

  • Svendsen, J.B. & Hartley, N.R., 2001. Comparison between outcrop-spectral gamma ray logging and whole rock geochemistry: implications for quantitative reservoir characterization in continental sequences. Marine andPetroleum Geology 18, 657-670.Google Scholar

  • Svendsen, J.B. & Hartley, N.R., 2002. Synthetic heavy mineral stratigraphy: applications and limitations. Marine and Petroleum Geology 19, 389-405.CrossrefGoogle Scholar

  • Thomas, H.H., 1902. Mineralogical constitution of the finer material of the Bunter Pebble-Bed in the west of England. Quarterly Journal of the Geological Society ofLondon 58, 620-632.Google Scholar

  • Thomas, H.H., 1909. A contribution to the petrography of the New Red Sandstone in the west of England. Quarterly Journal of the Geological Society of London 65, 229-244.Google Scholar

  • Thompson, D.B., 1970. Sedimentation of the Triassic (Scythian) red pebbly sandstones in the Cheshire Basin and its margins. Geological Journal 7, 183-216.Google Scholar

  • Tischendorf, G., Förster, H.-J., Frischbutter, A., Kramer, W., Schmidt, W. & Werner, C.D., 1995. Igneous activity. [In:] R.D. Dallmeyer, W. Franke & K. Weber (Eds): Pre-Permian geology of central and eastern Europe. Springer-Verlag, Berlin, 249-259.Google Scholar

  • Tyrrell, S., Haughton, P.D.W., Souders, A.K., Daly, J.S. & Shannon, P.M., 2012. Large-scale, linked drainage systems in the NW European Triassic: insights from the Pb isotopic composition of detrital K-feldspar. Journalof the Geological Society 169, 279-295.Google Scholar

  • Van Loon, A.J. & Mange, M.A., 2007. “In situ” dissolution of heavy minerals through extreme weathering, and the application of the surviving assemblages and their dissolution characteristics to correlation of Dutch and German silver sands. [In:] M.A. Mange & D.T. Wright (Eds): Heavy minerals in use. Developments in Sedimentology 58, 189-213.Google Scholar

  • Vidal, P., Auvray, B., Charlot, R. & Cogné, J., 1981. Precambrian relicts in the Armorican Massif: their age and role in the evolution of the western and central European Cadomian-Hercynian belt. Precambrian Research 14, 1-20.CrossrefGoogle Scholar

  • Warrington, G. & Ivimey-Cooke, H.C., 1992. Triassic. [In:] J.C.W. Cope, J.K. Ingham & P.F. Rawson (Eds): Atlasof palaeogeography and lithofacies. Geological Society, London, Memoir 13, 97-106.Google Scholar

  • Wills, L.J., 1956. Concealed coalfields. Blackie, London, 208 pp.Google Scholar

  • Wills, L.J., 1970. The Triassic succession in the central Midlands in its regional setting. Quarterly Journal ofthe Geological Society of London, 126, 225-283.Google Scholar

  • Woronko, B., Rychel, J., Karasiewicz, M.T., Ber, A., Krzywicki, T., Marks, L. & Pochocka-Szwarc, K., 2013. Heavy and light minerals as a tool for reconstruction of depositional environments: an example from the Jałówka site (northern Podlasie region, NE Poland). Geologos 19 (this issue), 47-66.Google Scholar

  • Wright, V.P., Marriott, S.B. & Vanstone, S.D., 1991. A reg palaeosol from the Lower Triassic of south Devon: stratigraphic and palaeoclimatic implications. GeologicalMagazine 128, 517-523. Google Scholar

About the article

Published Online: 2013-05-31

Published in Print: 2013-05-01


Citation Information: Geologos, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/logos-2013-0005.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in