Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologos

The Journal of Adam Mickiewicz University

3 Issues per year


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Open Access
Online
ISSN
2080-6574
See all formats and pricing
More options …

First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting

Sina Asadi / Farid Moore / Alireza Zarasvandi / Majid Khosrojerdi
Published Online: 2014-01-29 | DOI: https://doi.org/10.2478/logos-2013-0019

Abstract

Hydrothermal alteration of the Meiduk porphyry copper deposit, south of the Kerman Cenozoic magmatic arc and southeast of the central Iranian volcano-plutonic belt has resulted in three stages of mineralisation characterised by veins and veinlets. These are, from early to late: (1) quartz + K-feldspar + biotite + pyrite ± chalcopyrite ± pyrrhotite ± magnetite (early potassic alteration and type-A veins); (2) quartz + chalcopyrite + pyrite + bornite + pyrrhotite + K- -feldspar + biotite + magnetite (potassic-sericitic alteration and type-B veins); and (3) quartz + pyrite + chalcopyrite + sericite (sericitic alteration and type-C veins). Most ores were formed during stages 2 and 3.

Three main types of fluid inclusions are distinguished based on petrographical, microthermometrical and laser Raman spectroscopy analyses, i.e. type I (three-phase aqueous inclusions), type II (three-phase liquid-carbonic inclusions) and type III (multi-phase solid inclusions). The fluid inclusions in quartz veins of the stages are mainly homogenised at 340-530°C (stage 1), 270-385°C (stage 2) and 214-350°C (stage 3), respectively, with salinities of 3.1-16 wt.% NaCl equivalent, 2.2-43 wt.% NaCl equivalent and 8.2-22.8 wt.% NaCl equivalent, respectively.

The estimated trapping pressures are 97.9-123.6 MPa (3.7-4.6 km) in stage 1 and 62.5-86.1 MPa (2.3-3.1 km) in stage 2, respectively. These fluid inclusions are homogenised in different ways at similar temperatures, suggesting that fluid boiling took place in stages 2 and 3. The fluid system evolved from high-temperature, medium-salinity, high-pressure and CO2-rich to low-temperature, low-pressure, high-salinity and CO2-poor, with fluid boiling being the dominating mechanism, followed by input of meteoric water. CO2 escape may have been a factor in increasing activities of NaCl and S2- in the fluids, diminishing the oxidation of the fluids from stage 1 to 3. The result was precipitation of sulphides and trapping of multi-phase solid inclusions in hydrothermal quartz veins.

Keywords: CO2-bearing fluid inclusions; laser Raman spectroscopy; collision; Meiduk porphyry copper deposit; Iran

  • Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., Ghorbani, M., Emami, M. & Murata, M., 2009. High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin 121, 857-868.CrossrefGoogle Scholar

  • Alavi, M., 2007. Structure of the the Zagros fold-thrust belt in Iran. American Journal of Science 307, 1064-1095.Google Scholar

  • Asadi, S., 2013. Selective geochemistry of barren and productive porphyry copper deposits in Urumiyeh- Dokhtar volcano-magmatic belt. National Iranian Copper Industries Company Internal Report (258/M/90/D) 2, 22-45.Google Scholar

  • Asadi, S., Moore, F. & Fattahi, N., 2013. Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, Sanandaj-Sirjan metamorphic zone, Iran. Geofluids 13, 66-81.CrossrefGoogle Scholar

  • Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology 194, 3-23.Google Scholar

  • Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683-684.CrossrefGoogle Scholar

  • Bodnar, R.J., 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineralogical Association of Canada Short Course Series 23, 139-152.Google Scholar

  • Boomeri, M., Nakashima, K. & Lentz, D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration 103, 17-29.CrossrefGoogle Scholar

  • Bowers, T.S. & Helgeson, H.C., 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47, 1247-1275.CrossrefGoogle Scholar

  • Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist 74, 1390-1393.Google Scholar

  • Brown, P.E. & Hagemann, S.G., 1994. MacFlinCor: A computer program for fluid inclusion data reduction and manipulation. [In:] B. De Vivo & M.L. Frezzotti (Eds): Fluid inclusions in minerals: methods and applications. International Mineralogical Association 16th Short Course of the Working Group, Portignano-Siena, Italy, 231-250.Google Scholar

  • Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos 55, 139-158.CrossrefGoogle Scholar

  • Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin 51, 257-268.CrossrefGoogle Scholar

  • Castillo, P.R., 2012. Adakite petrogenesis. Lithos 135, 304-316.Google Scholar

  • Chen, Y.J. & Fu, S.G., 1992. Gold mineralization in West Henan, China. China Seismological Press, Beijing, 234 pp.Google Scholar

  • Chen, Y.J. & Wang, Y., 2011. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: implications for the nature of porphyry systems of postcollisional tectonic settings. International Geology Review 53, 635-655.CrossrefGoogle Scholar

  • Chen, Y.J., Ni, P., Fan, H.R., Pirajno, F., Lai, Y., Su, W.C. & Zhang, H., 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica 23, 2085-2108.Google Scholar

  • Chen,Y.J. & Li, N., 2009. Diagnostic fluid inclusion and wallrock alteration of intrusionrelated hypothermal ore-systems (porphyry, skarn, breccia pipe, vein and IOCG) formed in intracontinental settings: origin and difference from those in volcanic arc. Acta Petrologica Sinica 25, 2477-2508.Google Scholar

  • Cline, J.S. & Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96, 8113-8126.CrossrefGoogle Scholar

  • Collins, P.L.F., 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology 74, 1435-1444.CrossrefGoogle Scholar

  • Conly, A.G., Beaudoin, G. & Scott, S.D., 2006. Isotopic constraints on fluid evolution and precipitation mechanisms for the Boléo Cu-Co-Zn district, Mexico. Mineralium Deposita 41, 27-151.Google Scholar

  • Dehghani, G.A. & Makris, T., 1983. The gravity field and crustal structure of Iran. Geological Survey of Iran Report 51, 51-68.Google Scholar

  • Dercourt, J., Zonenshain, L., Ricou, L.E., Kazmin, G., LePichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P. & Biju-Duval, B., 1986. Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123, 241-315.CrossrefGoogle Scholar

  • Dewey, J.F., Pitman, W.C., Ryan, W.B. & Bonnin, J., 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.CrossrefGoogle Scholar

  • Dimitrijevic, M.D., 1973. Geology of the Kerman region. Geological Survey of Iran Report 52, 245-334.Google Scholar

  • Dreher, A.M., Xavier, R.P., Taylor, B.E. & Martini, S., 2007. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil. Mineralium Deposita 43, 161-184.Google Scholar

  • Dubessy, J., Buschaert, S., Lamb, W., Pironon, J. & Thiery, R., 2001. Methane-bearing aqueous fluid inclusions: raman analysis, thermodynamic modeling and application to petroleum basins. Chemical Geology 173, 193-205.Google Scholar

  • Fan, H.R., Hu, F.F., Wilde, S.A., Yang, K.F. & Jin, C.W., 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid inclusion and stable isotope evidence for an origin from magmatic fluids. International Geology Review 53, 25-45.CrossrefGoogle Scholar

  • Guild, P.W., 1972. Metallogeny and the new global tectonics. International Geological Congress Proceedings 4, 17-24.Google Scholar

  • Hall, D.L., Sterner, S.M. & Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology 83, 197-202.CrossrefGoogle Scholar

  • Haschke, M., Ahmadian, J., Murata, M. & McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology 105, 855-865.CrossrefGoogle Scholar

  • Hassanzadeh, J., 1993. Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Ker man province). Unpublished Ph.D. thesis. University of California, 204 pp.Google Scholar

  • Hezarkhani, A., 2008. Hydrothermal evolution of the Miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. International Geology Review 50, 665-684.CrossrefGoogle Scholar

  • Hou, Z.Q. & Cook, N.J., 2009. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geology Reviews 36, 2-24.CrossrefGoogle Scholar

  • Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y. & Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters 220, 139-155.Google Scholar

  • Hou, Z.Q., Zhang, H., Pan, X. & Yang, Z., 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews 39, 21-45.CrossrefGoogle Scholar

  • Huizenga, J.M., 1995. Fluid evolution in shear zones from the Late Archean Harare-Shamva-Bindura greenstone belt (NE Zimbabwe): thermodynamic calculations of the C-O-H system applied to fluid inclusions. Netherlands Research School of Sedimentary Geology Press, Amsterdam, 146 pp.Google Scholar

  • Hurai, H., Kihle, J., Kotulova, J., Marko, F.S. & Wierczewska, A., 2002. Origin of methane in quartz crystals from the Tertiary accretionary wedge and fore-arc basin of the Western Carpathians. Applied Geochemistry 17, 1259-1271.CrossrefGoogle Scholar

  • IGME-INOMRM (Institute for Geological & Mining Exploration & Institution of Nuclear and Other Mineral Raw Materials), 1973. Exploration for ore deposits in Kerman Region. Iran Geological Survey Report No. Yu/53; Iran Geological Survey (Beograd, Yugoslavia), 247 pp.Google Scholar

  • Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R. & Wijbrans, R.J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, eastern Turkey: implications for crustal thickening to delamination. Lithos 114, 109-120.CrossrefGoogle Scholar

  • Kirkham, R.V. & Dunne, K.P., 2000. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geological Survey of Canada Report 3792, 1-26.Google Scholar

  • Klemm, L.M., Pettke, T. & Heinrich, C.A., 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita 43, 533-552.CrossrefGoogle Scholar

  • Klemm, L.M., Pettke, T., Heinrich, C.A. & Campos, E., 2007. Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology 102, 1021-1045.CrossrefGoogle Scholar

  • Landtwing, M.R., Furrer, C., Redmond, P.B., Pettke, T., Guillong, M. & Heinrich, C.A., 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology 105, 91-118.CrossrefGoogle Scholar

  • Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T. & Kunze, K., 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry. Earth and Planetary Science Letters 235, 229-243.CrossrefGoogle Scholar

  • Li, N., Carranza, E.J.M., Ni, Z.Y. & Guo, D.S., 2012. The CO2-rich magmatic-hydrothermal fluid of the Qiyugou breccia pipe, Henan Province, China: implication for breccia genesis and gold mineralization. Geochemistry: Exploration, Environment, Analysis 12, 147-160.Google Scholar

  • Liang, H.Y., Sun, W.D., Su, W.C. & Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology 104, 587-596.CrossrefGoogle Scholar

  • Lowenstern, J.B., 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita 36, 490-502.CrossrefGoogle Scholar

  • Lu, H.Z., Fan, H.R., Ni, P., Ou, G.X., Shen, K. & Zhang, W.H., 2004. Fluid inclusions. Science Press, Beijing, 78 pp.Google Scholar

  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. & Champion, D., 2005. An overview of adakite, tonalite- trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1-24.CrossrefGoogle Scholar

  • McClay, K.R., Whitehouse, P.S., Dooley, T. & Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine Geology 21, 857-877.CrossrefGoogle Scholar

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K. & Kekelidze, G., 2000. Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, 5695-5719.Google Scholar

  • McCuaig, T.C. & Kerrich, R., 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews 12, 381-453.CrossrefGoogle Scholar

  • McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., Belousova, E., Griffin, W.L., Bertens, A., Sukarna, D., Permanadewi, S., Andrew, R.L. & Deckart, D., 2005. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-Mo-Au deposits. [In:] T.M. Porter (Ed.): Super porphyry copper and gold deposits: a global perspective. PGC Publishing, Adelaide, 1-16.Google Scholar

  • Mohajjel, M., Fergusson, C.L. & Sahandi, M.R., 2003. Cretaceous- Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397-412.CrossrefGoogle Scholar

  • Moore, F., 1992. Fluid inclusion studies and mineralization at Meiduk porphyry copper deposit, Kerman. National Iranian Copper Industries Company Report 8, 1-26.Google Scholar

  • Mungall, J.E., 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915-918.CrossrefGoogle Scholar

  • Nwe, Y.Y. & Morteani, G., 1993. Fluid evolution in the H2O-CH4-CO2-NaCl system during emerald mineralization at Gravelotte, Murchison greenstone belt, Northeast Transvaal, South Africa. Geochimica et Cosmochimica Acta 57, 89-103. Ohmoto, H. & Kerrick, D., 1977. Devolatilization equilibria in graphitic systems. American Journal of Science 277, 1013-1044.Google Scholar

  • Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Heidelberg, 1250 pp.Google Scholar

  • Razique, A.L., Grasso, G. & Livesey, T., 2007. Porphyry copper-gold deposits at Reko Diq complex, Chagai Hills Pakistan. Proceedings of Ninth Biennial SGA Meeting (Dublin), 1-7.Google Scholar

  • Redmond, P.B., Einaudi, M.T., Inan, E.E., Landtwing, M.R. & Heinrich, C.A., 2004. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32, 217-220.CrossrefGoogle Scholar

  • Richards, J.P., Spell, T., Rameh, E., Razique, A. & Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology 107, 295-332.CrossrefGoogle Scholar

  • Richards, J.R. & Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology 102, 537-576.CrossrefGoogle Scholar

  • Robb, L., 2005. Introduction to ore-forming processes. Blackwell Publishing, Oxford, 386 pp.Google Scholar

  • Roedder, E., 1984. Fluid inclusions, reviews in mineralogy. Mineralogical Society of America 12, 325-340.Google Scholar

  • Rusk, B. & Reed, M., 2002. Scanning electron microscope- cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30, 727-730.CrossrefGoogle Scholar

  • Rusk, B., Reed, M. & Dilles, J., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology 103, 307-334.CrossrefGoogle Scholar

  • Saric, V. & Mijalkovic, N., 1973. Metallogenic map of Kerman region, 1:500000 scale. Exploration for ore deposits in Kerman region. Geological Survey of Iran Report 53, 244-247.Google Scholar

  • Shafiei, B., Haschke, M. & Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44, 265-283.CrossrefGoogle Scholar

  • Shafiei, B., 2008. Metallogenic model for Kerman porphyry copper belt and its implications for exploration. Unpublished Ph.D. Thesis. University of Kerman (Shaheed Bahonar), Iran, 257 pp.Google Scholar

  • Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic- metallogenetic implications. Ore Geology Reviews 38, 27-36.CrossrefGoogle Scholar

  • Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24, 405-417.CrossrefGoogle Scholar

  • Shen, P., Shen, Y., Wang, J., Zhu, H., Wang, L. & Meng, L., 2010. Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China. Chemical Geology 275, 78-98.Google Scholar

  • Shepherd, T.J., Rankin, A.H. & Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie Press, London, 239 pp.Google Scholar

  • Sun, W.D., Arculus, R.J., Kamenetsky, V.S. & Binns, R.A., 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431, 975-978.Google Scholar

  • Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R., Wei, Q.R. & Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta 103, 263-275.CrossrefGoogle Scholar

  • Taghipour, N., 2007. The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. Thesis. Shaheed Bahonar University (Kerman), Iran, 321 pp.Google Scholar

  • Taghipour, N., Aftabi, A. & Mathur, R., 2008. Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran. Resource Geology 2, 143-160.CrossrefGoogle Scholar

  • Topuz, G., Okay, A.I., Altherr, R., Schwar, W.H., Siebel, W., Zack, T., Muharrem, S. & Cuneyt, S., 2011. Post-collisional adakite-like magmatism in the Ağvanis massif and implications for the evolution of the Eocene magmatismin the Eastern Pontides (NE Turkey). Lithos 125, 131-150.Google Scholar

  • Ulrich, T., Guenther, D. & Heinrich, C.A., 2001. The evolution of a porphyry Cu-Au deposit, based on LAICP- MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 96, 1743-1774.CrossrefGoogle Scholar

  • Ulrich, T., Gunther, D. & Heinrich, C.A., 2002. Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 97, 1863-1920.Google Scholar

  • Volkov, A.V., Savva, N.E., Sidorov, A.A., Prokofev, V.Y., Goryachev, N.A., Voznesensky, S.D., Al’Shevsky, A.V. & Chernova, A.D., 2011. Shkol’noe gold deposit, the Russian Northeast. Geology of Ore Deposits 53, 1-26.CrossrefGoogle Scholar

  • Wang, L.L., Mo, X.X., Li, B., Dong, G.C. & Zhao, Z.D., 2006. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet. Acta Petrologica Sinica 22, 1001-1008.Google Scholar

  • Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos 55, 229-272.CrossrefGoogle Scholar

  • Yang, Y., Zhang, J., Yang, Y.F. & Shi, Y.X., 2009. Fluid inclusions geochemistry and ore genesis of Shangfanggou Mo-Fe deposit in Luanchuan County, Henan Province. Acta Petrologica Sinica 25, 2563-2574.Google Scholar

  • Yang, Y.F., Chen, Y.J., Li, N., Mi, M., Xu, Y.L., Li, F.L. & Wanc, S.Q., 2013. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: a case of NaCl-poor, CO2- rich fluid systems. Journal of Geochemical Exploration 124, 1-13.Google Scholar

  • Yang, Y.F., Li, N. & Chen, Y.J., 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of por phyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews 46, 83-94.CrossrefGoogle Scholar

  • Zarasvandi, A., Liaghat, S. & Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposit, central Iran. International Geology Review 47, 620-646.CrossrefGoogle Scholar

  • Zarasvandi, A., Liaghat, S. Zentilli, M. & Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology 16, 11-24.Google Scholar

  • Zhang, Y. & Frantz, J.D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusion. Chemical Geology 64, 335-350.CrossrefGoogle Scholar

  • Zhong, J., Chen, Y.J., Chen, J., Li, N., Li, J., Qi, J.P. & Mao- Chang, D.A.I., 2011. Fluid inclusion study of Luoboling porphyry Cu-Mo deposit in Zijinshan ore field, Fujian Province. Acta Petrologica Sinica 27, 1410-1424. Google Scholar

About the article

Published Online: 2014-01-29

Published in Print: 2013-12-01


Citation Information: Geologos, ISSN (Online) 2080-6574, ISSN (Print) 1426-8981, DOI: https://doi.org/10.2478/logos-2013-0019.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Alireza Zarasvandi, Mohsen Rezaei, Johann Raith, David Lentz, Amir-Mortaza Azimzadeh, and Hooshang Pourkaseb
Journal of Asian Earth Sciences, 2015, Volume 111, Page 175
[3]
Alireza Zarasvandi, Mohsen Rezaei, Martiya Sadeghi, David Lentz, Mansour Adelpour, and Hooshang Pourkaseb
Ore Geology Reviews, 2015, Volume 70, Page 407
[4]
Sina Asadi, Ryan Mathur, Farid Moore, and Alireza Zarasvandi
Terra Nova, 2015, Volume 27, Number 1, Page 36
[5]
[7]
Behnam Shafiei, GholamHossein Shamanian, Ryan Mathur, and Hassan Mirnejad
Mineralium Deposita, 2015, Volume 50, Number 3, Page 281

Comments (0)

Please log in or register to comment.
Log in