Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologos

The Journal of Adam Mickiewicz University

3 Issues per year


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Open Access
Online
ISSN
2080-6574
See all formats and pricing
More options …

Seismogenic structures in Quaternary lacustrine deposits of Lake Van (eastern Turkey)

Serkan Üner
Published Online: 2014-07-08 | DOI: https://doi.org/10.2478/logos-2014-0011

Abstract

Soft-sediment deformation structures formed by liquefaction and/or fluidisation of unconsolidated sediments due to seismic shocks are frequent in the Quaternary sandy, silty and clayey deposits of Lake Van. They are present in both marginal and deep lacustrine facies. Their morphology and interpreted genesis imply that they should be considered as fluid-escape structures (dish and pillar structures, flame structures and sand volcanoes), contorted structures (simple and complex convolutions and ball-and-pillow structures) and other structures (disturbed layers and slump structures). The most recently formed structures are related to the October 23rd, 2011 Van-Tabanli (M 7.2) earthquake. The existence of seismites at various stratigraphic levels in the lacustrine deposits is indicative of tectonic activity that frequently triggered earthquakes with magnitudes of 5 or more, affecting the Lake Van Basin.

Keywords: Seismites; soft-sediment deformation structures; earthquake; Lake Van; Turkey

References

  • Acarlar, M., Bilgin, A.Z., Elibol, E., Erkan, T., Gedik, İ., Güner, E., Hakyemez, Y., Şen, A.M., Uĝuz, M.F. & Umut, M., 1991. Van Gölü doĝusu ve kuzeyinin jeoloji-si[Geology of the eastern and northern part of Lake Van]. The Mineral Research and Exploration Institute of Turkey (MTA) Rept. 9469, 94 pp. (in Turkish).Google Scholar

  • Alan, H., Bozkurt, E., ζaĝlan, D., Dirik, K., Özkaymak, Ç., Sözbilir, H. & Topal, T., 2011. Van earthquakes report (Tabanli and Edremit). Chamber of Turkish Geological Engineers Report110, 48 pp.Google Scholar

  • Alfaro, P., Moretti, M. & Soria, J.M., 1997. Soft-sediment deformation structures induced by earthquakes (seis-mites) in Pliocene lacustrine deposits (Guadix-Baza Basin, central Betic Cordillera). Eclogae Geologicae Hel-vetiae90, 531-540.Google Scholar

  • Allen, C.R., 1975. Geological criteria for evaluating seis-micity. Geological Society of American Bulletin86, 10411057.Google Scholar

  • Allen, J.R.L., 1986. Earthquake magnitude-frequency, epicentral distance and soft-sediment deformation in sedimentary basins. Sedimentary Geology46, 67-75.Google Scholar

  • Ambraseys, N.N., 1988. Engineering seismology. Earthquake Engineering and Structural Dynamics17, 1-105. Atkinson, G., 1984. Simple computation of liquefaction probability for seismic hazard applications. Earthquake Spectra1, 107-123.CrossrefGoogle Scholar

  • Bhattacharya, H.N. & Bandyopadhyay, S., 1998. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sedimentary Geology119, 239-252.Google Scholar

  • Bowman, D., Korjenkov, A. & Porat, N., 2004. Late-Pleistocene seismites from Lake Issyk-Kul, The Tien Shan range, Kyrghyztan. Sedimentary Geology163, 211-228.Google Scholar

  • Chen, J. & Lee, H.S., 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology288, 81-94.Google Scholar

  • Chen, J., Chough, S.K., Chun, S.S. & Han, Z., 2009a. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology56, 1174-1195.CrossrefGoogle Scholar

  • Chen, J., Van Loon, A.J., Han, Z. & Chough, S.K., 2009b. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sedimentary Geology221, 1-6.Google Scholar

  • Chen, J., Chough, S.K., Han, Z. & Lee, J.-H., 2011. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian Formations (late Middle Cambrian to Furongian), Shandong Province, China: sequence-stratigraphic implications. Sedimentary Geology233, 129-149.Google Scholar

  • Dasgupta, P., 1998. Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin, India - a plausible origin. Sedimentary Geology119, 253261.Google Scholar

  • Degens, E.T., Wong, H.K., Kempe, S. & Kurtman, F., 1984. A geological study of Lake Van, eastern Turkey. Geo-logische Rundschau73-2, 701-734.Google Scholar

  • Degens, E.T., Wong, H.K., Kurtman, F. & Finckh, P., 1978. Geological development of Lake Van: a summary. [In:] E.T. Degens & F. Kurtman (Eds): The geology of Lake Van.The Mineral Research and Exploration Institute of Turkey (MTA) Publication 169, 134-146.Google Scholar

  • Fukuoka, M., 1971. Memories of earthquake and foundations. Bridges and Foundations5, 1-10.Google Scholar

  • Galli, P. & Meloni, F., 1993. Nuovo catalogo dei proces-si di liquefazione avvenuti in occasione dei terremoti storici in Italia. Il Quaternario6, 271-292 (in Italian).Google Scholar

  • He, B., Qiao, X., Jiao, C., Xu, Z., Cai, Z., Guo, X., Zhang, Y. & Zhang, M., 2014. Paleo-earthquake events in the late Early Palaeozoic of the central Tarim Basin: evidence from deep drilling cores. Geologos20, 105-123.Google Scholar

  • Hempton, M.R., Dunne, L.A. & Dewey, J.F., 1983. Sedimentation in an active strike-slip basin, southeastern Turkey. Journal of Geology91, 401-412.Google Scholar

  • Kempe, S., Khoo, F. & Gürleyik, Y., 1978. Hydrography of Lake Van and its drainage area. [In:] E.T. Degens & F. Kurtman (Eds): The geology of Lake Van.The Mineral Research and Exploration Institute of Turkey (MTA) Publication 169, 30-44.Google Scholar

  • Kogyiĝit, A., 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences62, 586-605.Google Scholar

  • Kogyiĝit, A., Yilmaz, A., Adamia, S. & Kuloshvili, S., 2001. Neotectonic of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta14, 177-195.CrossrefGoogle Scholar

  • Kuzucuoĝlu, C., Christol, A., Mouralis, D., Doĝu, A.F., Akköprü, E., Fort, M., Brunstein, D., Zorer, H., Fon-tugne, M., Karabiyikoĝlu, M., Scaillet, S., Reyss, J.L. & Guillou, H., 2010. Formation of the Upper Pleistocene terraces of Lake Van. Journal of Quaternary Science25, 1124-1137.Google Scholar

  • Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örgen, S. & Caĝatay, M.N., 2009. Van Gölü Sondaj Projesi ‘PALE-OVAN', Uluslararasi Bilimsel Kita Sondaj Programi (ICDP): Yakla$an Derin Sondaj Seferi ve Bilimsel Hede-fler.[Lake Van drilling project], 62. Türkiye Jeoloji Ku-rultayi Bildiri Özleri (Ankara), 718-719 (in Turkish).Google Scholar

  • Lowe, D.R., 1975. Water escape structures in coarsegrained sediments. Sedimentology22, 157-204.CrossrefGoogle Scholar

  • Molina, J.M., Alfaro, P., Moretti, M. & Soria, J.M., 1998. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir basin, Spain). Terra Nova10, 145-150.CrossrefGoogle Scholar

  • Moretti, M. & Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant ‘Arcangelo Basin (southern Italy): seismic shock vs. overloading. Sedimentary Geology196, 31-45.Google Scholar

  • Moretti, M. & Van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites. Journal of Palaeogeography3, 13-24.Google Scholar

  • Moretti, M., Alfaro, P., Caselles, O. & Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tec-tonophysics304, 369-383.Google Scholar

  • Moretti, M., Pieri, P., Tropeano, M. & Walsh, N., 1995. Tyrrhenian seismites in Bari area (Murge-Apulian foreland). Atti dei Convegni Licenci122, Terremoti in Italia, Roma1-2/12, 211-216.Google Scholar

  • Obermeier, S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology44, 1-76.Google Scholar

  • Obermeier, S.F., 1998. Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA. Engineering Geology50, 227-254.Google Scholar

  • Obermeier, S.F., Jacobson, R.B., Smott, J.P., Weems, R.E., Gohn, G.S., Monroe, J.E. & Powards, D.S., 1989. Earthquake-induced liquefaction features in the coastal setting of south Carolina and the fluvial setting of the New Madrid seismic zone. United States Geological Survey Professional Paper1504, 44 pp.Google Scholar

  • Özkaymak, C., Sözbilir, H., Bozkurt, E., Dirik, K., Topal, T., Alan, H. & Caĝlan, D. 2012. 23 Ekim 2011 Taban-li-Van Depreminin Sismik Jeomorfolojisi ve Doĝu An-adolu'daki Aktif Tektonik Yapilarla Iliskisi [Seismic geomorphology of the October 23, 2011 Tabanli-Van earthquake and its relation to active tectonics of East Anatolia]. Jeoloji Mühendisliĝi Dergisi35, 175-199 (in Turkish).Google Scholar

  • Perucca, L.P., Godoy, E. & Pantano, A., 2014. Late Pleis- tocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequi-on River valley, Central Precordillera, Argentina. Geologos20, 147-156.Google Scholar

  • Plaziat, J.C. & Ahmamou, M., 1998. Les differents mé-canismes a l'origine de la diversité des seismites, leur identification dans le Pliocene du Saiss de Fes et de Meknes (Maroc) et leur signification tectonique. Geo-dinamica Acta11, 183-203.Google Scholar

  • Ricci Lucchi, F., 1995. Sedimentological indicators of pale-oseismicity. [In:] L. Serva & D.B. Slemmons (Eds): Perspectives in paleoseismology.Association of Engineering Geologists Special Publication 6, 7-17.Google Scholar

  • Ringrose, P.S., 1989. Paleoseismic (?) liquefaction event in late Quaternary lake sediment at Glen Roy, Scotland. Terra Nova1, 57-62.Google Scholar

  • Rodríguez-Lopez, J.P., Merléndez, N., Soria, A.R., Liesa, C.L. & Van Loon, A.J., 2007. Lateral variability of ancient seismites related to differences in sedimentary facies (the syn-rift Escucha Formation, mid-Cretaceous, Spain). Sedimentary Geology201, 461-484Google Scholar

  • Rodriguez-Pascua, M.A., Calvo, J.P., De Vicente, G. & Gómez-Gras, D., 2000. Soft sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology135, 117-135.Google Scholar

  • Rossetti, D.F., 1999. Soft-sediment deformational structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: evidences for paleoseismicity. Sedimentology46, 1065-1081.CrossrefGoogle Scholar

  • Sarkar, S., Choudhuri, A., Banerjee, S., Van Loon, A.J. & Bose, P.K., 2014. Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India. Geologos20, 89-103.Google Scholar

  • Scott, B. & Price, S., 1988. Earthquake-induced structures in young sediments. Tectonophysics147, 165-170.Google Scholar

  • Seed, H.B. & Idriss, I.M., 1982. Ground motions and soil liquefaction during earthquakes.Earthquake Engineering Research Institute (Berkeley), 134 pp.Google Scholar

  • Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology13, 155-159.CrossrefGoogle Scholar

  • Seilacher, A., 1984. Sedimentary structures tentatively attributed to seismic events. Marine Geology55, 1-12.Google Scholar

  • Sims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics29, 141-152.CrossrefGoogle Scholar

  • Spence, G.H. & Tucker, M.E., 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology112, 163-193.Google Scholar

  • Saroĝlu, F. & Yilmaz, Y., 1986. Doĝu Anadolu'da neotek-tonik dönemdeki jeolojik evrim ve havza modelleri [Geological evolution and basin models of the neo-tectonic period at Eastern Anatolia]. Maden Tetkik ve Arama Dergisi107, 73-94 (in Turkish).Google Scholar

  • Sengör, A.M.C. & Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics75, 181-241.Google Scholar

  • Tasgin, C.K. & Turkmen, L, 2009. Analysis of soft-sediment deformation structures in Neogene fluvio-lacus-trine deposits of Gaybaĝi formation, eastern Turkey. Sedimentary Geology218, 16-30.Google Scholar

  • Üner, S., Yesilova, ζ., Yakupoĝlu, T. & Üner, T., 2010. Pekismemis sedimanlarda depremlerle olusan deformasyon yapilari (sismitler): Van Gölü Havzasi, Doĝu Anadolu [Earthquake-induced soft-sediment deformation structures (seismites): Van Gölü Basin, eastern Anatolia]. Bulletin for Earth Sciences31, 53-66.Google Scholar

  • Valente, A., Ślącka, A. & Cavuoto, G., 2014. Soft-sediment deformation in Miocene deep-sea clastic deposits (Ci-lento, southern Italy). Geologos20, 67-78.Google Scholar

  • Van Loon, A.J., 2002. Soft-sediment deformations in the Kleszczów Graben (central Poland). Sedimentary Geology147, 57-70.Google Scholar

  • Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15, 3-55.Google Scholar

  • Van Loon, A.J., 2014a. The life cycle of seismite research. Geologos20, 61-66.Google Scholar

  • Van Loon, A.J., 2014b. The Mesoproterozoic ‘seismite’ at Laiyuan (Hebei Province, E China) re-interpreted. Geologos20, 139-146.Google Scholar

  • Van Loon, A.J. & Maulik, P., 2011. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sedimentary Geology 238, 145-155.Google Scholar

  • Van Loon, A.J. & Mazumder, R., 2011. Can once lithified rocks later undergo soft-sediment deformation? Sedimentary Geology238, 101-105.Google Scholar

  • Van Loon, A.J., Han, Z. & Han, Y., 2013. Origin of vertically oriented clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong Province, China). Sedimentology60, 10591070.Google Scholar

  • Van Loon, A.J. & Pisarska-Jamrozy, M., 2014. Sedimen-tological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology300, 1-10.Google Scholar

  • Visher, G.S. & Cunningham, R.D., 1981. Convolute laminations - a theoretical analysis: example of Pennsyl-vanian sandstone. Sedimentary Geology28, 175-189.Google Scholar

About the article

Received: 2013-11-07

Accepted: 2013-12-17

Published Online: 2014-07-08


Citation Information: Geologos, ISSN (Online) 2080-6574, DOI: https://doi.org/10.2478/logos-2014-0011.

Export Citation

© 2014 Serkan Üner. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Beata Gruszka, Amir Mokhtari Fard, and A.J. (Tom) van Loon
Sedimentary Geology, 2016, Volume 344, Page 47
[2]
A.J. (Tom) van Loon, Małgorzata Pisarska-Jamroży, Māris Nartišs, and Māris Krievāns
CATENA, 2016, Volume 140, Page 140

Comments (0)

Please log in or register to comment.
Log in