Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Adam Mickiewicz University

3 Issues per year

CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805

Open Access
See all formats and pricing
More options …

Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran)

Batoul Taghipour / Farhad Ahmadnejad
Published Online: 2015-04-07 | DOI: https://doi.org/10.1515/logos-2015-0002


The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation.

Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385°C and Tm from -11 to -16°C. Type III three-phase carbonic-liquid inclusions (liquid water-liquid CO2-vapour CO2) with Th of 345-385°C. The mean values of the density of ore-forming fluids, pressure and depth of mineralisation have been calculated to be 0.79-0.96 gr/cm3, 2 kbar and 7 km, respectively. The δ18Owater and δD values of the gold-bearing quartz-sulphide veins vary from 7.2‰ to 8‰ and -40.24‰ to -35.28‰, respectively, which are indicative of an isotopically heavy crustal fluid and likely little involvement of meteoric fluid. The δ18Owater values of the quartz-calcite veins have a range of -5.31‰ to -3.35‰, and the δD values of -95.65‰ to -75.31‰, which are clearly lower than those of early-stage quartz-sulphide-gold veins, and are close to the meteoric water line. Based on comparisons of the D-O isotopic systematics, the Qolqoleh ore-mineralising fluids originated from metamorphic devolatilisation of Cretaceous volcano-sedimentary piles. Devolatilisation of these units occurred either synchronously with, or postdates, the development of penetrative (ductile) structures such as shear zones and during overprinting brittle deformation

Keywords: fluid inclusion; δ18O and δD isotopes; rare earth and trace element mobility; Sanandaj-Sirjan Zone; Iran


  • Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F., 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401-419.CrossrefGoogle Scholar

  • Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211-238.CrossrefGoogle Scholar

  • Alavi, M., 2004. Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 1-20.CrossrefGoogle Scholar

  • Alavi, M., 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science 307, 1064-1095.CrossrefGoogle Scholar

  • Aliyari, F., Rastad, E. & Zengqian, H., 2007. Orogenic gold mineralization in the Qolqoleh gold deposit, Northwestern Iran. Resource Geology 57, 262-289.Google Scholar

  • Aliyari, F., Ebrahim, R., Mohammad, M. & Greg, B.A., 2009. Geology and geochemistry of D-O-C isotope systematics of the Qolqoleh gold deposit, Northwestern Iran: Implications for ore genesis. Ore Geology Reviews 36, 306-314.CrossrefGoogle Scholar

  • Aliyari, F., Ebrahim, R., Goldfarb, R. & Sharif, j.A., 2012. Geochemistry of hydrothermal alteration at the Qolqoleh gold deposit in the northern part of the Sanandaj-Sirjan metamorphic belt, northwestern Iran. Journal of Geochemical Exploration DOI: 10.1016/j.gexplo.2012.02.001.CrossrefGoogle Scholar

  • Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A. & Babaei, A., 2007. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences 30, 474-489.CrossrefGoogle Scholar

  • Azizi, H. & Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics 47, 167-179.CrossrefGoogle Scholar

  • Baharifar, A., Moinevaziri, H., Bellon, H. & Pique, A., 2004. The crystalline complexes of Hamadan (Sanandaj-Sirjan Zone, western Iran): metasedimentary Mesozoic sequences affected by late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geoscience 336, 1443-1452.CrossrefGoogle Scholar

  • Bailey, C.M., Simpson, C. & De Paor, D.G., 1994. Volume loss and tectonic flattening strain in granitic mylonites from the Blue Ridge province, central Appalachians. Journal of Structural Geology 16, 1403-1416.CrossrefGoogle Scholar

  • Bakker, R.J., 1997. Clathrates: computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computer Geosciences 23, 1-18.CrossrefGoogle Scholar

  • Bakker, R.J., 1999. Optimal interpretation of microthermometrical data from fluid inclusions: thermodynamic modeling and computer programming. Ruprecht-Karls University, Heidelberg, 50 pp. (in German) Bau, M., 1991. Rare-earth elements mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of Europium. Chemical Geology 93, 219-230.Google Scholar

  • Berberian, M., 1976. Seismotectonic Map of Iran, 1:2500000. Geological Survey of Iran.Google Scholar

  • Berberian, F. & Berberian, M., 1981. Tectono-plutonic episodes in Iran. [In:] Gupta, H.K. & Delany, F.M. (Eds), Zagros-Hijndu Kush-Himalaya geodynamic evolution. American Geophysical Union, Geodynamic Series 3, 5-32.Google Scholar

  • Berberian, M. & King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210-26.CrossrefGoogle Scholar

  • Berberian, M., 1983. The Southern Caspian: A Compressional Depression Floored by a Trapped, Modified Oceanic Crust. Canadian Journal of Earth Sciences 20, 163-83.CrossrefGoogle Scholar

  • Berberian, M., 1995. Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193-224.CrossrefGoogle Scholar

  • Bierlein, F.P., Hughes, M., Dunphy, J., McKnight, S., Reynolds, P.R. & Waldron, H.M., 2001. Trace element geochemistry, 40Ar/39Ar ages, Sm-Nd systematics and tectonic implications of mafic- intermediate dykes associated with orogenic lode gold mineralisation in central Victoria, Australia. Lithos 58, 1-31.Google Scholar

  • Bodnar, R.J., 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties on inclusion fluid. Economic Geology 78, 535-542.CrossrefGoogle Scholar

  • Brown, P.E., 1989. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist Journal 74, 1390-1393.Google Scholar

  • Brown, P.E. & Hagemann, S.G., 1995. MacFlincor and its application to fluids in Archean lodegold deposits. Geochimica et Cosmochima Acta 59, 3943-3952.CrossrefGoogle Scholar

  • Burrows, D.R. & Spooner, E.T.C ., 1989. Pb isotope geochemistry of the Silidor and Launay gold deposits; implications for the source of Archean Au in the Abitibi Subprovince. Economic Geology 88, 1722-1730.Google Scholar

  • Cameron, E.M., 1988. Archean gold: relation to granulite formation and redox zoning in the crust. Geology 16, 109-112.CrossrefGoogle Scholar

  • Cameron, E.M., 1989. Scouring of gold from the lower crust. Geology 17, 26-29.CrossrefGoogle Scholar

  • Clayton, R.N., O,Neil, L.R. & Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research 77, 3057-3067.CrossrefGoogle Scholar

  • Colvine, A.C., 1989. An empirical model for the formation of Archean gold deposits: Products of final cratonization of the Superior Province, Canada, [In:] Keys, R.R., Ramsay, W.R.H. & Groves, D.I. (Eds), The Geology of Gold Deposits: The Perspective in 1988. Economic Geology Monograph 6, 37-53.Google Scholar

  • Condie, K.C. & Sinha, A.K., 1996. Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian mountains, USA. Journal of Metamorphic Geology 14, 213-226.CrossrefGoogle Scholar

  • De Ronde, C.E.J., Faure, K., Bray, C.J. & Whitford, D.J., 2000. Round Hill shear zone-hosted gold deposit, Macraes flat, Otago, New Zealand: evidence of a magmatic ore fluid. Economic Geology 95, 1025-1048.Google Scholar

  • Diamond, L.W., 2003. Systematics of H2O inclusions. [In:] Samson, I., Anderson, A. & Marshall, D. (Eds) Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Short Course 32, 55-79.Google Scholar

  • Dickin, A.P., 1988. Evidence for limited REE leaching from the Roffna Gneiss, Switzerland - a discussion of the paper by Vocke et al. Contributions to Mineralogy and Petrology 99, 273-275.CrossrefGoogle Scholar

  • Dipple, G.M., Wintsch, R.P. & Andrews, M.S., 1990. Identification of the scales of differential element mobility in a ductile shear zone. Journal of Metamorphic Geology 8, 645-661.CrossrefGoogle Scholar

  • Eftekhar-Nezhad, J., 1973. The Mahabad Quadrangle Map, 1:250000. Geological Survey and Mineral Exploration of Iran.Google Scholar

  • Eftekhar-Nezhad, J., 1981. Tectonic division of Iran with respect to sedimentary basins. Journal of Iranian Petroleum Society 82, 19-28 (in Farsi).Google Scholar

  • Felsche, J. & Herrmann, A.G., 1978. Yitrium and lanthanides. [In:] Wedpohl, K. (Ed.), Handbook of Geochemistry. Springer-Verlag, New York, 57-71.Google Scholar

  • Fourcade, S., Marquer, D. & Javoy, M., 1989. 18O/16O variations and fluid circulation in a deep shear zone: the case of the alpine ultramylonites from the Aar massif (Central Alps, Switzerland). Chemical Geology 77, 119-131.CrossrefGoogle Scholar

  • Ghasemi, A. & Talbot, C.J., 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences 26, 683-693.CrossrefGoogle Scholar

  • Glazner, A.F. & Bartley, J.M., 1991. Volume loss fluid flow and state of strain in the extensional mylonites from the central Mojave Desert, California. Journal of Structural Geology 5, 587-594.CrossrefGoogle Scholar

  • Goddard, J.V. & Evans, J.P., 1995. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA. Journal of Structural Geology 17, 533-547.CrossrefGoogle Scholar

  • Goldfarb, R.J., Groves, D.I. & Gardoll, S., 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews 18, 1-75.CrossrefGoogle Scholar

  • Goldfarb, R.J., Ayuso, R., Miller, M.L., Ebert, S.W., Marsh, E.E., Petsel, S.A., Miller, L.D., Bradley, D., Johnson, G. & Mcclelland, W., 2004. The Late Cretaceous Donlin Creek Gold Deposit, Southwestern Alaska: Controls on Epizonal Ore Formation. Economic Geology 99, 643-671.CrossrefGoogle Scholar

  • Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J.R. & Gosselin, P., 2005. Distribution, character and genesis of gold deposits in metamorphic terranes. Economic Geology 100th Anniv., 407-450.Google Scholar

  • Grant, J.A., 1986. The isocon diagram - a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology 81, 1976-1982.CrossrefGoogle Scholar

  • Grant, J.A., 2005. Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth 30, 997-1004.CrossrefGoogle Scholar

  • Gresens, R.L., 1967. Composition-volume relationships of metasomatism. Chemical Geology 2, 47-65.CrossrefGoogle Scholar

  • Groves, D.I., Goldfarb, R.J., Gebre, M.M., Hagemann, S.G. & Robert, F., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13, 7-27.CrossrefGoogle Scholar

  • Groves, D.I., Goldfarb, R.J., Knox-Robinson, C.M., Ojala, J., Gardoll, S., Yun, G. & Holyland, P., 2000. Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn block, Western Australia. Ore Geology Reviews 17, 1-38.CrossrefGoogle Scholar

  • Guilbert, J.M. & Park, C.F., 1997. The geology of ore deposits. W. H. Freeman and Company, New York, 985pp.Google Scholar

  • Haas, J.R., Shock, E.L. & Sassani, D.C., 1995. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta 59, 4329-4350.CrossrefGoogle Scholar

  • Hagemann, S.G., Gebre-Mariam, G. & Groves, D.L., 1994. Surface-water influx in shallow-level Archean lode gold deposits in Western Australia. Geology 22, 1067-1070.CrossrefGoogle Scholar

  • Hippertt, J.F., 1998. Breakdown of feldspar, volume gain and lateral mass transfer during mylonitization of granitoid in a low metamorphic grade shear zone. Journal of Structural Geology 20, 175-193.CrossrefGoogle Scholar

  • Ingles, J., Lamouroux, C., Soula, J.C., Guerrero, N. & Debat, P., 1999. Nucleation of ductile shear zone in a granodiorite under greenschist facies conditions, Néouvielle massif, Pyrenees, France Journal of Structural Geology 21, 555-576.CrossrefGoogle Scholar

  • Irvine, T.N. & Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548.CrossrefGoogle Scholar

  • Kerrich, R., Allison, I., Barnett, R.L., Moss, S. & Starkey, J., 1980. Microstructural and chemical transformations accompanying deformation of granite in a shear zone at Mieville, Switzerland; with implications for stress corrosion cracking and superplastic flow. Contributions to Mineralogy and Petrology 73, 221-241.CrossrefGoogle Scholar

  • Kesler, S.E., 2005. Ore-forming fluids. Elements 1, 13-18.CrossrefGoogle Scholar

  • Kikawada, Y., 2001. Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology 176, 137-149.CrossrefGoogle Scholar

  • Kwon, S., Park, Y., Park, C. & Kim, H.S., 2009. Mass-balance analysis of bulk-rock chemical changes during mylonitization of a megacryst- bearing granitoid, Cheongsan shear zone, Korea. Journal of Asian Earth Sciences 35, 489-501.CrossrefGoogle Scholar

  • Lewis, A.J., Palmer, M.R., Sturchio, N.C. & Kemp, A.J., 1997. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta 61, 695-706.CrossrefGoogle Scholar

  • Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews 7, 25-41.CrossrefGoogle Scholar

  • McCuaig, T.C. & Kerrich. R., 1998. P-T-t-deformation- fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews 12, 381-453.CrossrefGoogle Scholar

  • Michard, A., 1989. Rare earth element systematic in hydrothermal fluid. Geochimica et Cosmochimica Acta 53, 745-750.CrossrefGoogle Scholar

  • Mohajjel, M., 1997. Structure and tectonic evolution of Palaeozoic-Mesozoic rocks, Sanandaj-Sirjan Zone, Western Iran. University of Wollongong, Wollongong, 284 pp.Google Scholar

  • Mohajjel, M., 2000. Geological map of the Qolqoleh and Kervian gold deposits, 1:5000. Geological Survey of Iran.Google Scholar

  • Mohajjel, M., Fergusson, C.L. & Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran. Journal of Asian Earth Sciences 21, 397-412.CrossrefGoogle Scholar

  • Moinevaziri, H., 1985. Volcanisme Tértiaire et Quatérnaire en Iran. [Tertiary and Quaternary volcanism in Iran]. University Paris-Sud, Paris, 290 pp. (in French) Murray, R.W., Brink, M.R., Jones, D.L., Gerlach, D.C. & Russ, G.P., 1990. REE as indicators of deffrent marine depositional environments in chert and shale. Geology 18, 268-271.Google Scholar

  • Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimical Acta 38, 757-775.CrossrefGoogle Scholar

  • Nesbitt, B.E., Muehlenbachs, K. & Murrowchick, J.B., 1989. Genetic implications of the stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera. Economic Geology 84, 1489-1506.CrossrefGoogle Scholar

  • Newman, J. & Mitra, G., 1993. Lateral variations in mylonite zone thickness as influenced by fluid- rock interactions, Linville Falls fault, North Carolina. Journal of Structural Geology 15, 849-863.CrossrefGoogle Scholar

  • Niroomand, S., Goldfarb, R.J., Moore, F., Mohajjel, M. & Marsh, E.E., 2011. The Kharapeh orogenic gold deposit: geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran. Mineralium Deposita 46, 409-428. O’Hara, K., 1988. Fluid flow and volume loss during mylonitization: an origin for phyllonites in an overthrust setting, North Carolina. USA. Tectonophysics 156, 21-36.Google Scholar

  • O’Hara, K. & Blackburn, W.H., 1989. Volume-loss model for trace-element enrichments in mylonites. Geology 17, 524-527.CrossrefGoogle Scholar

  • O’Hara, K., 1990. State of strain in mylonites from the western Blue Ridge province, southern Appalachians: the role of volume loss. Journal of Structural Geology 12, 419-430.CrossrefGoogle Scholar

  • Omrani, J., Agard, P., Whitechurch, H., Mathieu, B., Prouteau, G. & Jolivet, L., 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran. A new report of adakites and geodynamic consequences. Lithos 106, 380-398.CrossrefGoogle Scholar

  • Pattrick, R.A.D., Boyce, A. & MacIntyre, R.M., 1988. Gold and silver mineralization at Tyndrum, Scotland. Mineralogy and Petrology 38, 61-76.CrossrefGoogle Scholar

  • Pearce, J.A., Harris, N.W. & Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956-983.CrossrefGoogle Scholar

  • Pirajno, F., 2009. Hydrothermal mineral deposits, principle and fundamental concept for the exploration geologist. Springer, 706 pp.Google Scholar

  • Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy 12, 644.Google Scholar

  • Rolland, Y., Cox, S., Boullier, A.M., Pennacchioni, G. & Mancktelow, N., 2003. Rare earth and tracen element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters 214, 203-219.CrossrefGoogle Scholar

  • Rollinson, H.R., 1993. Using geochemical data: evolution, presentation, interpretation. Longman, London, 652 pp.Google Scholar

  • Sarkarinejad, K. & Alizadeh, A., 2009. Dynamic model for the exhumation of the Tutak gneiss dome within a bivergent wedge in the Zagros Thrust System of Iran. Journal of Geodynamics 47, 201-209. CrossrefGoogle Scholar

  • Selverstone, J., Morteani, G. & Stuade, J.M., 1991. Fluid channelling during ductile shearing: transformation of granodiorite into aluminous schist in the Tauern Window, eastern Alps. Journal of Metamorphic Geology 9, 419-431.CrossrefGoogle Scholar

  • Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24, 405-17.CrossrefGoogle Scholar

  • Sheikholeslami, M.R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H. & Hashem Emami, M., 2008. Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj- Sirjan Zone, SW Iran). Journal of Asian Earth Sciences 31, 504-521.CrossrefGoogle Scholar

  • Shepherd, T.J., Rankin, A.H. & Alderton, D.H.M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, 239 pp.Google Scholar

  • Sinha, A.K., Hewitt, D.A. & Rimstidt, J.D., 1986. Fluid interaction and element mobility in the development of ultramylonites. Geology 14, 883-886.CrossrefGoogle Scholar

  • So, C.S. & Yun, S.T., 1997. Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea: constraints on hydrothermal fluid chemistry. Economic Geology 92, 60-80.CrossrefGoogle Scholar

  • Sterner, S.M. & Bodnar, R.J., 1984. Synthetic fluid inclusions in natural quartz. I. Compositional types synthesized and applications to experimental geochemistry. Geochimica et Cosmochimica Acta 48, 2659-2668.CrossrefGoogle Scholar

  • Taylor, S.R. & McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell, Oxford, 312 pp.Google Scholar

  • Touret, J. & Dietvorst, P., 1983. Fluid inclusions in high-grade anatectic metamorphites. Journal of the Geological Society of London 140, 635-649.CrossrefGoogle Scholar

  • Touret, J.L.R., 2001. Fluids in metamorphic rocks Lithos 55, 1-26.CrossrefGoogle Scholar

  • Vance, R.K. & Condie, K.C., 1987. Geochemistry of footwall alteration associated with the early Proterozoic United Veerde massive sulfide deposit, Jerome, Arizona. Economic Geology 82, 571-586.CrossrefGoogle Scholar

  • Wendlandt, R.F. & Harrison, W.J., 1979. Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapour: results and implications for the formation of light rare- earth-enriched rocks. Contributions to Mineralogy and Petrology 69, 409-419.Google Scholar

  • Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos 55,229-272.CrossrefGoogle Scholar

  • Wood, S.A., 1990. The aqueous geochemistry of the rare-earth elements and Yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapour pressure. Chemical Geology 88, 99-125.Google Scholar

  • Zhang, X.H., Liu, Q., Ma, Y.J. & Wang, H., 2005. Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted Gold Deposit, North China Craton. Ore Geology Reviews 26, 325-348. CrossrefGoogle Scholar

About the article

Received: 2014-07-03

Accepted: 2015-01-28

Published Online: 2015-04-07

Published in Print: 2015-03-01

Citation Information: Geologos, Volume 21, Issue 1, Pages 31–57, ISSN (Online) 2080-6574, DOI: https://doi.org/10.1515/logos-2015-0002.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in