Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologos

The Journal of Adam Mickiewicz University

3 Issues per year


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Open Access
Online
ISSN
2080-6574
See all formats and pricing
More options …

Mantle rock exposures at oceanic core complexes along mid-ocean ridges

Jakub Ciazela
  • Corresponding author
  • Institute of Geology, Adam Mickiewicz University, Institute of Geology, Maków polnych 16, 61-606 Poznań, Poland
  • Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juergen Koepke
  • Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henry J.B. Dick
  • Department of Geology and Geophysics, Woods Hole Oceanographic Institution, MS #8, McLean Laboratory, Woods Hole MA 02543-1539, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Muszynski
  • Institute of Geology, Adam Mickiewicz University, Institute of Geology, Maków polnych 16, 61-606 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-22 | DOI: https://doi.org/10.1515/logos-2015-0017

Abstract

The mantle is the most voluminous part of the Earth. However, mantle petrologists usually have to rely on indirect geophysical methods or on material found ex situ. In this review paper, we point out the in-situ existence of oceanic core complexes (OCCs), which provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow-spreading ridges. OCCs are a common structure in oceanic crust architecture of slow-spreading ridges. At least 172 OCCs have been identified so far and we can expect to discover hundreds of new OCCs as more detailed mapping takes place. Thirty-two of the thirty-nine OCCs that have been sampled to date contain peridotites. Moreover, peridotites dominate in the plutonic footwall of 77% of OCCs. Massive OCC peridotites come from the very top of the melting column beneath ocean ridges. They are typically spinel harzburgites and show 11.3–18.3% partial melting, generally representing a maximum degree of melting along a segment. Another key feature is the lower frequency of plagioclase-bearing peridotites in the mantle rocks and the lower abundance of plagioclase in the plagioclase-bearing peridotites in comparison to transform peridotites. The presence of plagioclase is usually linked to impregnation with late-stage melt. Based on the above, OCC peridotites away from segment ends and transforms can be treated as a new class of abyssal peridotites that differ from transform peridotites by a higher degree of partial melting and lower interaction with subsequent transient melt.

Keywords: peridotite; OCC; detachment fault; megamullion; slow-spreading ridge

References

  • Andreani, M., Ildefonse, B., Delacour, A., Escartín, J., Godard, M. & Dyment, J., 2010. Tectonic Structure and Internal Composition of the Rainbow Massif, Mid-Atlantic Ridge 36°14’N. Abstract presented at AGU Chapman Conference, Agros, Cyprus.Google Scholar

  • Andreani, M., Escartín, J., Delacour, A., Ildefonse, B., Godard, M., Dyment, J., Fallick, A.E. & Fouquet, Y., 2014. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14′N). Geochemistry, Geophysics, Geosystems 15, 3543–3571.CrossrefGoogle Scholar

  • ARCYANA, 1975. Transform fault and rift valley from bathyscaph and diving saucer. Science 190, 108–116.Google Scholar

  • Auzende, J.-M., Bideau, D., Bonatti, E., Cannat, M., Honnorez, J., Lagabrielle, Y., Malavieille, J., Mamaloukas-Frangoulis, V. & Mével, C., 1989. Direct observation of a section through slow-spreading oceanic crust. Nature 337, 726–729.Google Scholar

  • Baines, A.G., Cheadle, M.J., Dick, H.J.B., Hosford Scheirer, A., John, B.E., Kusznir, N.J. & Matsumoto, T., 2003. A mechanism for generating the anomalous uplift of oceanic core-complexes: Atlantis Bank, SW Indian Ridge. Geology 31, 1105–1108.CrossrefGoogle Scholar

  • Baines, A.G., Cheadle, M.J., Dick, H.J.B., Hosford Scheirer, A., John, B.A., Kusznir, N. J. & Matsumoto, T., 2007. Evolution of the Southwest Indian Ridge from 55°45’E to 62°E: Changes in Plate-Boundary Geometry Since 26 Ma. Geochemistry, Geophysics, Geosystems 8, Q06022.Google Scholar

  • Bagherbandi, M., Tenzer, R. Sjöberg, L.E. & Novák, P., 2013. Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. Journal of Geodynamics 66, 25–37.CrossrefGoogle Scholar

  • Bartsch, C., 2014. Structural and magnetic investigation of two spreading systems around the Rodriguez Triple Junction with respect to hydrothermal activity. Naturwissenschaftliche Fakultät, Gottfried Wilhelm Leibniz Universität Hannover, PhD thesis, 237 pp.Google Scholar

  • Beltenev, V., Ivanov, V., Rozhdestvenskaya, I., Cherkashov, G., Stepanova, T., Shilov, V., Pertsev, A., Davydov, M., Egorov, I., Melekestseva, I., Narkevsky, E. & Ignatov, V., 2007. A new hydrothermal field at 13°30′N on the Mid-Atlantic Ridge. InterRidge News 16, 9–10.Google Scholar

  • Blackman, D.K. & Collins, J.A., 2010. Lower crustal variability and the crust/mantle transition at the Atlantis Massif oceanic core complex. Geophysical Research Letters 37, L24303.CrossrefGoogle Scholar

  • Blackman, D.K., Cann, J.R., Janssen, B. & Smith, D.K., 1998. Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. Journal of Geophysical Research 103, 315–333.CrossrefGoogle Scholar

  • Blackman, D.K., Karson, J.A., Kelley, D.S., Cann, J.R., Gretchen L., Früh-Green, G.L., Gee, J.S., Hurst, S.D., John, B.E., Morgan, J., Nooner, S.L., Ross, D.K, Schroeder, T.J. & Williams, E.A., 2002a. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the evolution of an ultramafic oceanic core complex. Marine Geophysical Research 23, 443–469.Google Scholar

  • Blackman, D.K., Lyons, S., Cann, J. & Morgan, J., 2002b. Morphology of a 9 Myr old oceanic core complex: Mid Atlantic Ridge 30°N, 43°W. Abstract presented at AGU Fall Meeting, San Francisco, USA.Google Scholar

  • Blackman, D.K., Karner, G.D. & Searle, R.C., 2008. Three-dimensional structure of oceanic core complexes: Effects on gravity signature and ridge flank morphology, Mid-Atlantic Ridge, 30°N. Geochemistry, Geophysics, Geosystems 9, 1–20.Google Scholar

  • Blackman, D.K., Canales, J.P. & Harding, A., 2009. Geophysical signatures of oceanic core complexes. Geophysical Journal International 178, 593–613.CrossrefGoogle Scholar

  • Blackman, D.K., Ildefonse, B., John, B.E., Ohara, Y., Miller, D.J., Abe, N., Abratis, M., Andal, E.S., Andréani, M., Awaji, S., Beard, J.S., Brunelli, D., Charney, A.B., Christie, D.M., Collins, J., Delacour, A.G., Delius, H., Drouin, M., Einaudi, F., Escartín, J., Frost, B.R., Früh-Green, G., Fryer, P.B., Gee, J.S., Godard, M., Grimes, C.B., Halfpenny, A., Hansen, H.-E., Harris, A.C., Tamura, A., Hayman, N.W., Hellebrand, E., Hirose, T., Hirth, J.G., Ishimaru, S., Johnson, K.T.M., Karner, G.D., Linek, M., MacLeod, C.J., Maeda, J., Mason, O.U., McCaig, A.M., Michibayashi, K., Morris, A., Nakagawa, T., Nozaka, T., Rosner, M., Searle, R.C., Suhr, G., Tominaga, M., von der Handt, A., Yamasaki, T. & Zhao, X., 2011. Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N. Journal of Geophysical Research 116, B07103.CrossrefGoogle Scholar

  • Bodinier, J.-L. & Godard, M. 2003. Orogenic, Ophiolitic and Abyssal Peridotites, [In:] R.W. Carlson (Ed.): Treatise on Geochemistry. Vol. 2: The Mantle and Core. Elsevier, Amsterdam, 103–170.Google Scholar

  • Bonatti, E., Peyve, A., Kepezhinskas, P., Kurentsova, N., Seyler, M., Skolotnev, S. & Udintsev, G., 1992. Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0°–15°N. Journal of Geophysical Research 97, 4461–4476.CrossrefGoogle Scholar

  • Bonatti, E., Ligi, M., Brunelli, D., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L. & Ottolini, L., 2003. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere. Nature 423, 499–505.Google Scholar

  • Buck, R.W., 1988. Flexural rotation of normal faults. Tectonics 7, 959–973.CrossrefGoogle Scholar

  • Canales, J.P., Detrick, R.S., Bazin, S., Harding, A.J. & Orcutt, J.A., 1998. Off-axis crustal thickness across and along the East Pacific Rise within the MELT area. Science 280, 1218–1221.Google Scholar

  • Canales, J.P., Detrick, R.S., Toomey, D.R. & Wilcock, W.S.D., 2003. Segment-scale variations in the crustal structure of 150–300 kyr old fast spreading oceanic crust (East Pacific Rise, 8°15’–10°5’N) from wide-angle seismic refraction profiles. Geophysical Journal International 152, 766–794.Google Scholar

  • Canales, J.P., Sohn, R.A. & deMartin, B.J., 2007. Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10’N): Implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges. Geochemistry, Geophysics, Geosystems 8, Q08004.Google Scholar

  • Cann, J.R., Blackman, D.K., Smith, D.K., McAllister, E., Janssen, B., Mello, S., Avgerinos, E., Pascoe, A.R, & Escartín, J., 1997. Corrugated slip surfaces formed at North Atlantic ridge-transform intersections. Nature 385, 329–332.Google Scholar

  • Cannat, M., 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research 98, 4163–4172.CrossrefGoogle Scholar

  • Cannat, M., 1996. How thick is the magmatic crust at slow spreading oceanic ridges. Journal of Geophysical Research 101, 2847–2857.CrossrefGoogle Scholar

  • Cannat, M. & Casey, J.F., 1995. An Ultramafic Lift at the Mid-Atlantic Ridge: Successive Stages of Magmatism in Serpentinized Peridotites from the 15°N Region. Petrology and Structural Geology 6, 5–34.CrossrefGoogle Scholar

  • Cannat, M., Mével, C., Maia, M., Deplus, C., Durand, C., Gente, P., Agrinier, P., Belarouchu, A., Dubuisson, G., Humler, E. & Reynolds, J., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23, 49–52.CrossrefGoogle Scholar

  • Cannat, M., Sauter, D., Mendel, V., Ruellan, E., Okino, K., Escartín, J., Combier, V. & Baala, M., 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34, 605–608.CrossrefGoogle Scholar

  • Cannat, M., Sauter, D., Escartín, J., Lavier, L. & Picazo, S., 2009. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth and Planetary Science Letters 288, 174–183.Google Scholar

  • Carlson, R.W., 2003. Introduction to Volume 2. [In:] R.W. Carlson (Ed.): Treatise on geochemistry. Vol. 2: The Mantle and Core. Elsevier, Amsterdam, 15–21.Google Scholar

  • Chamot-Rooke, N., Fournier, M., Petit, C., Fabbri, O., Huchon, P., Lepvrier C. & Maillot, B., 2008. Sheba Ridge’s Oceanic Core Complexes. Abstract presented at EGU General Assembly, Vienna, Austria.Google Scholar

  • Choi, S.H., Mukasa, S.B. & Shervais, J.W., 2008. Initiation of Franciscan subduction along a large-offset fracture zone: Evidence from mantle peridotites, Stonyford, California. Geology 36, 595–598.CrossrefGoogle Scholar

  • Christie, D.M., West, B.P., Pyle, D.G. & Hanan, B.B., 1998. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature 394, 637–644.Google Scholar

  • Coogan, L.A., 2013. The lower oceanic crust. Manuscript submitted for publication. 113 pp.Google Scholar

  • d’Acremont, E., Leroy, S., Maia, M., Patriat, P., Beslier, M.-O., Bellahsen, N., Fournier, M. & Gente, P., 2006. Structure and evolution of the eastern Gulf of Aden: Insights from magnetic and gravity data (Encens-Sheba MD117cruise). Geophysical Journal International 165, 786–803.Google Scholar

  • Dannowski, A., Grevemeyer, I., Ranero, C.R., Ceuleneer, G., Maia, M., Morgan, J.P. & Genteet, P., 2010. Seismic structure of an oceanic core complex at the Mid-Atlantic Ridge, 22°19′N. Journal of Geophysical Research 115, 1–15.Google Scholar

  • deMartin, B.J., Sohn, R.A., Canales, J.P. & Humphris, S.E., 2007. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology 35, 711–714.CrossrefGoogle Scholar

  • Dick, H.J.B., 1989. Abyssal peridotites, very slow-spreading ridges and ocean ridge magmatism. [In:] A.D. Saunders & M.J. Norry (Eds): Magmatism in the Ocean Basins. Geological Society, London, 71–105.CrossrefGoogle Scholar

  • Dick, H.J.B., 2010. Tale of two core complexes: Contrasting crustal architecture and fault geometries. Abstract presented at AGU Chapman Conference, Agros, Cyprus.Google Scholar

  • Dick, H.J.B. & Zhou, H., 2015. Ocean rises are products of variable mantle composition, temperature and focused melting. Nature Geoscience 8, 68–74.CrossrefGoogle Scholar

  • Dick, H.J.B., Bryan, W.B. & Thompson, G., 1981. Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersections. [In:] A.R. Ritsema (Ed.): European Seismological Commisssion Meeting and Abstracts. Eos, Transaction American Geophysical Union 62, 406.Google Scholar

  • Dick H.J.B., Schouten, H., Meyer, P,S., Gallo, D.G., Bergh, H., Tyce, R., Patriat, P., Johnson, K.T.M., Snow, J. & Fisher, A., 1991. Tectonic evolution of the Atlantis II Fracture Zone. [In:] R.P. Von Herzen, P.T. Robinson et al. (Eds): Proceedings of the Ocean Drilling Program, Scientific Results 118, 359–398.Google Scholar

  • Dick H.J.B., Natland J.H., Alt J.C., Bach, W., Bideau, D., Gee, J.S., Haggas, S., Hertogen, J.G.H., Hirth, G., Holm, P.M., Ildefonse, B., Iturrino, G.J., John, B.E., Kelley, D.S., Kikawa, E., Kingdon, A., LeRoux, P.J., Maeda, J., Meyer, P.S., Miller, D.J., Naslund, H.R., Niu, Y.-L. Robinson, P.T., Snow, J., Stephen, R.A., Trimby, P.W., Worm, H.-U. & Yoshinobu, A., 2000. A long in situ section of lower oceanic crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179, 31–51.CrossrefGoogle Scholar

  • Dick, H.J.B., Arai, S., Hirth, G., John, B.J. & KROO-06 Scientific Party, 2001. A subhorizontal cross-section through the crust mantle boundary at the SW Indian Ridge. Geophysical Research Abstracts 3, 794.Google Scholar

  • Dick, H.J.B., Lin, J. & Schouten, H., 2003. An ultraslow spreading class of ocean ridge. Nature 426, 405–412.Google Scholar

  • Dick, H.J.B., Natland, J.H. & Ildefonse, B., 2006. Past and future impact of deep drilling in the oceanic crust and mantle. Oceanography 19, 72–80.CrossrefGoogle Scholar

  • Dick, H.J.B., Tivey, M.A. & Tucholke, B.E., 2008. Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30’N, 45°20’W. Geochemistry, Geophysics, Geosystems 9, Q05014.Google Scholar

  • Dick, H.J.B., Lissenberg, C.J., & Warren, J.M., 2010. Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: The paleo-MAR from 23°15′N to 23°45′N. Journal of Petrology 51, 425–467.CrossrefGoogle Scholar

  • Drolia, R.K. & DeMets, C., 2005. Deformation in the diffuse India-Capricorn-Somalia triple junction from a multibeam and magnetic survey of the northern Central Indian Ridge, 3°S–10°S. Geochemistry, Geophysics, Geosystems 6, Q09009.Google Scholar

  • Drouin, M., Godard, M. & Ildefonse, B., 2007. Origin of olivine-rich troctolites from IODP Hole U1309D in the Atlantis Massif (Mid-Atlantic Ridge): petrostructural and geochemical study. Eos, Transactions American Geophysical Union 89(53), Fall Meet. Suppl., Abstract T53B-1300.Google Scholar

  • Drouin, M., Godard, M., Ildefonse, B., Bruguier, O. & Garrido, C.J., 2009. Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30°N). Chemical Geology 264, 71–88.Google Scholar

  • Drouin, M., Ildefonse, B. & Godard, M., 2010. A micro-structural imprint of melt impregnation in slow spreading lithosphere: Olivine-rich troctolites from the Atlantis Massif, Mid-Atlantic Ridge, 30°N, IODP Hole U1309D. Geochemistry, Geophysics, Geosystems 11, Q06003.Google Scholar

  • Dyment, J., Bissessur, D., Bucas, K., Cueff-Gauchard, V., Durand, L., Fouquet, Y., Gaill, F., Gente, P., Hoise, E., Ildefonse, B., Konn, C., Lartaud, F., LeBris, N., Musset, G., Nunes, A., Renard, J., Riou, V., Tasiemski, A., Thibaud, R., Torres, P., Yatheesh, V., Vodjdani, I. & Zbinden, M, 2009. Detailed investigation of hydro-thermal site Rainbow, Mid-Atlantic Ridge, 36°13’N: Cruise MoMARDream. InterRidge News 18, 22–24.Google Scholar

  • Dziewonski, A.M. & Anderson, D.L, 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors 25, 297–356.CrossrefGoogle Scholar

  • Escartín, J. & M. Cannat, M., 1999. Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty Fracture Zones (Mid-Atlantic Ridge, 14–16° N). Earth and Planetary Science Letters 171, 411–424.Google Scholar

  • Escartín, J. & Canales, J.P., 2011. Detachments in oceanic lithosphere: Deformation, magmatism, fluid flow, and ecosystems. Eos, Transactions American Geophysical Union 92, 31.CrossrefGoogle Scholar

  • Escartín, J., Mével, C., Mac-Leod, C.J. & McCaig, A.M., 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45′N. Geophysics, Geochemistry, Geosystems 4, 1067.Google Scholar

  • Escartín, J., Smith, D.K., Cann, J. Schouten, H., Langmuir, C.H. & Escrig, S., 2008. Central role of detachment faults in accretion of slow-spread oceanic lithosphere. Nature 455, 790–794.Google Scholar

  • Escartín, J., Soule, S.A., Cannat, M., Fornari, D.J., Düşünür, D. & Garcia, R., 2014. Lucky Strike seamount: Implications for the emplacement and rifting of segment-centered volcanoes at slow spreading mid-ocean ridges. Geochemistry, Geophysics, Geosystems 15, 4157–4179.CrossrefGoogle Scholar

  • Exon, N., Pandey, D., Gallagher, S., Rajan, S., Coffin, M., Takai, K. & other workshop participants, 2011. Detailed report on Indian Ocean IODP workshop. Integrated Ocean Drilling Program, Goa, India, 50 pp.Google Scholar

  • Fouquet, F., Barriga, F., Charlou, J.L., Elderfield, H., German, C.R., Ondreas, H., Parson, L., Radford-Knoery, J., Relvas, J., Ribeiro, A., Schultz, A., Apprioual, R., Cambon, P., Costa, I., Donval, J.P., Douville, E., Landure, J.Y., Normand, A., Pelle, H., Ponsevera, E., Riches, S., Santana, H. & Stephan, M., 1998. FLORES diving cruise with the Nautile near the Azores – First dives on the Rainbow field: hydrothermal sweater/mantle interaction. InterRidge News 7, 24–28.Google Scholar

  • Fournier, M., Chamot-Rooke, N., Petit, C., Huchon, P., Al-Kathiri, A., Audin, L., Beslier, M.-O., d’Acremont, E., Fabbri, O., Fleury, J.-M. Khanbari, K., Lepvrier, C., Leroy, S., Maillot, B. & Merkouriev S., 2010. Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. Journal of Geophysical Research 115, B04102.CrossrefGoogle Scholar

  • Fournier, M., Petit, C., Chamot-Rooke, N., Fabbri, O., Huchon, P., Maillot, B. & Lepvrier, C., 2008. Do ridge–ridge–fault triple junctions exist on Earth? Evidence from the Aden–Owen–Carlsberg junction in the NW Indian Ocean. Basin Research 20, 575–590.CrossrefGoogle Scholar

  • Fujimoto, H., Cannat, M., Fujioka, M.K., Gamo, T., German, C., Mével, C., Muench, U., Ohta, S., Oyaizu, M., Parson, L., Searle, R., Sohrin, Y. & T. Yama-ashi, T., 1999. First submersible investigation of mid-ocean ridges in the Indian Ocean. InterRidge News 8, 22–24.Google Scholar

  • Fujiwara, T., Lin, J. Matsumoto, T. Kelemen, P.B. Tucholke, B.E. & Casey, J.F., 2003. Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochemistry, Geophysics, Geosystems. 4(3), 1024.Google Scholar

  • Gente, P., Thibaud, R., Dyment, J., Fouquet, Y., Ildefonse, B., Hoisé, E., Bissessur, D., Yatheesh, V. & the MOMARDREAM 2008 Scientific Party, 2008. High resolution topography of the Rainbow hydrothermal area, Mid-Atlantic Ridge, 36°14’N. Eos, Transactions American Geophysical Union 89(53), Fall Meet. Suppl., Abstract T43B-2027.Google Scholar

  • Gold, T., 1999. The Deep Hot Biosphere. Copernicus, New York, 235 pp.Google Scholar

  • Gràcia, E., Bideau, D., Hekinian, R., Lagabrielle, Y., & Parson, L. M., 1997. Along-axis magmatic oscillations and exposure of ultramafic rocks in a second-order segment of the Mid-Atlantic Ridge (33° 43’N to 34° 07’N). Geology 25, 1059–1062.CrossrefGoogle Scholar

  • Gràcia, E., Charlou, J.L., Radford-Knoery, J. & Parson, L., 2000. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°–34°N): Ultramafic exposures and hosting of hydrothermal vents. Earth and Planetary Science Letters 177, 89–103.CrossrefGoogle Scholar

  • Grevemeyer, I., Reston, T.J. & Moeller, S., 2013. Micro-seismicity of the Mid-Atlantic Ridge at 7°S–8°15’S and at the Logatchev Massif oceanic core complex at 14°40’N–14°50’N. Geochemistry, Geophysics, Geosystems 14, 3532–3554.CrossrefGoogle Scholar

  • Han, X., Wu, Z. & Qiu, B., 2012. Morphotectonic characteristics of the northern part of the Carlsberg Ridge near the Owen Fracture Zone and the occurrence of oceanic core complex formation. Abstract presented at AGU Fall Meeting, San Francisco, USA.Google Scholar

  • Hellebrand, E., Snow, J.E., Dick, H.J.B. & Hofmann, H., 2001. Coupled major and trace-element indicators in mid-ocean ridge peridotites. Nature 410, 677–681.Google Scholar

  • Hosford, A., Tivey, M. Matsumoto, T., Dick, H.J.B., Schouten, H. & Kinoshita, H., 2003. Crustal magnetization and accretion at the Southwest Indian Ridge near the Atlantis II fracture zone, 0-25 Ma. Journal of Geophysical Research 108, 2169.CrossrefGoogle Scholar

  • Ildefonse, B., Andreani, M., Hoise, E., Ballu, V., Escartín, J., Dyment, J. & Fouquet, Y., 2007. Further geological sampling around the Rainbow hydrothermal site, Mid-Atlantic Ridge. Eos, Transaction American Geophysical Union 88(52), Fall Meet. Suppl., Abstract T53B-1306.Google Scholar

  • Jaroslow, G.E., Hirth, G. & Dick, H.J.B., 1996. Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics 256, 17–37.Google Scholar

  • Jousselin, D., Nicolas, A. & Boudier, F., 1998. Detailed mapping of a mantle diapir below a paleo-spreading center in the Oman ophiolite. Journal of Geophysical Research 103, 18153–18170.CrossrefGoogle Scholar

  • Jousselin, D., Nicolas, A., Boudier, F. & Meshi, A., 2013. High-T detachment shear zone in Mirdita ophiolite (Albania). Abstract nr T23F-2656 presented at AGU Fall Meetin, San Francisco, USA.Google Scholar

  • Kamesh Raju, A.K., Samudrala, K., Drolia, R.K., Amarnath, D., Ramachandran, R. & Mudholkar, A., 2012. Segmentation and morphology of the Central Indian Ridge between 3°S and 11°S, Indian Ocean. Tectonophysics 554–557, 114–126.Google Scholar

  • Karson, J.A., Früh-Green, G.L., Kelley, D.S., Williams, E.A., Yoerger, D.R. & Jakuba, M., 2006. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N. Geochemistry, Geophysics, Geosystems 7, Q06016.Google Scholar

  • Karsten, J., Klein, E., Martinesz, F., Mühe, R., Sturm, M., Coleman, T., Hayasaka, J., Jung, D., Murray, G., Muse, B., Newsom, A., Stewart, M., Tougas, S. & Gallegos, J., 1999. The northern Chile Ridge revealed: Preliminary cruise report of PANORAMA Expedition Leg 04. InterRidge News 8, 15–21.Google Scholar

  • Kelemen, P.B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H.J.B., 1997. A review of melt migration processes in the asthenospheric mantle beneath oceanic spreading centers. Philosophical Transactions of the Royal Society A 355, 283–318.Google Scholar

  • Kelley, D.S., Karson, J.A., Blackman, D.K., Fruh-Green, G.L., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T. & Rivizzigno, P., 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412, 145–149.Google Scholar

  • Klein, E.M., 2003. Geochemistry of the Igneous Oceanic Crust. [In:] R.L. Rudnick (Ed.): Treatise on geochemistry. Vol. 3: The Earth’s Crust. Elsevier, Amsterdam, 433–463.Google Scholar

  • Kostitsyn, Yu. A., Silantyev, S.A., Belousova, E.A., Bortnikov, N.S., Krasnova, E.A. & Cannat, M., 2013. Time of the formation of the oceanic core complex of the hydrothermal field in the Mid-Atlantic Ridge (12°58′N): Evidence from zircon study. Doklady Earth Sciences, 447, 1301–1305.Google Scholar

  • Kumagai, H., Nakamura, K., Toki, T., Morishita, T., Okino, K., Ishibashi, J.I., Tsunogai, U., Kawaguchi, S., Gamo, T., Shibuya, T., Sawaguchi, T., Neo, N., Joshima, M., Sato, T. & Takai, K., 2008. Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: Implications of their vent fluids’ distinct chemistry. Geofluids 8, 239–251.CrossrefGoogle Scholar

  • Lagabrielle, Y., Brovarone, A.V. & Ildefonse, B., 2015. Fossil oceanic core complexes recognized in the blue schist metaophiolites of Western Alps and Corsica. Earth-Science Reviews 141, 1–26.Google Scholar

  • Lavier, L.L., Buck, W.R. & Poliakov, A.N.B, 1999. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27, 1127–1130.CrossrefGoogle Scholar

  • Macdonald, K.C., Scheirer, D.S. Carbotte, S. & Fox, P.J, 1993. It’s only Topography: Part 2. GSA Today 3, 29–35.Google Scholar

  • MacLeod, C.J., Escartín, J., Banerji, D., Banks, G.J., Gleeson, M., Irving, D.H.B., Lilly, R.M., McCaig, A.M., Niu, Y., Allerton, S. & Smith, D.K., 2002. Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15°45’N. Geology 30, 879–882.CrossrefGoogle Scholar

  • MacLeod, C.J., Searle, R.C., Murton, B.J., Casey, J.F., Mallows, C., Unsworth, S.C., Achenbach, K.L. & Harris, M., 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters 287, 333–344.Google Scholar

  • MacLeod, C.J., Carlut, J., Escartín, J., Horen, H. & Morris, A., 2011. Quantitative constraint on footwall rotations at the 15°45′N oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes. Geochemistry, Geophysics, Geosystems 12, Q0AG03.Google Scholar

  • Maffione, M., Morris, A. & Anderson, M.W., 2013. Recognizing detachment-mode seafloor spreading in the deep geological past. Scientific Reports 3, 2336.Google Scholar

  • Mallows, C. & Searle, R.C., 2012. A geophysical study of oceanic core complexes and surrounding terrain, Mid-Atlantic Ridge 13°N–14°N. Geochemistry, Geophysics, Geosystems 13, Q0AG08.Google Scholar

  • Manatschal, G., Sauter, D., Karpoff, A.M., Masini, E., Mohn, G. & Lagabrielle, Y., 2011. The Chenaillet ophiolite in the French/Italian Alps: an ancient analogue for an oceanic core complex? Lithos 124, 169–184.CrossrefGoogle Scholar

  • Martinez, F. & Taylor, B., 2002. Mantle wedge control on back-arc crustal accretion. Nature 416, 417–420.Google Scholar

  • Marty, B. & Yokochi, R., 2006. Water in the Early Earth. Review in Mineralogy & Geochemistry 62, 421–450.Google Scholar

  • McCaig, A., 2010. Hydrothermal Systems and Detachment Faulting. Abstract presented at AGU Chapman Conference, Agros, Cyprus.Google Scholar

  • McCaig, A.M., Cliff, B., Escartín, J., Fallick, A.E. & MacLeod, C.J., 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35, 935–938.CrossrefGoogle Scholar

  • McCollom, T.M. & Seewald, J.S., 2013. Serpentinites, Hydrogen, and Life. Elements 9, 129–134.CrossrefGoogle Scholar

  • Ménez B, Pasini V. & Brunelli, D., 2012. Life in the hydrated suboceanic mantle. Nature Geoscience 5,133–137.CrossrefGoogle Scholar

  • Mével, C., Agrinier, P., Cannat, M., Decitre, S., Dappoigny, A., Humler, E., Jendrzejewski, N., Kienast, J.R., Ludden, J., Murton, B., Oufi, O., Rabain, A., Seyler, M. & Tamura, Y., 1997. Sampling the South West Indian Ridge: first results of the EDUL cruise (R/V Marion Dufresne II, August 1997). InterRidge News 6, 25–26.Google Scholar

  • Miller, D.J. & Christensen, N.I, 1997. Seismic velocities of lower crustal and upper mantle rocks from the slow spreading Mid-Atlantic Ridge, south of the Kane transform zone (MARK). [In:] J.A. Karson, M. Cannat, D.J. Miller & D. Elthon (Eds): Proceedings of the Ocean Drilling Program, Scientific Results 153, 437–454.Google Scholar

  • Miranda, J.M., Silva, P.F., Lourenço, N., Henry, B., Costa, R. & Team, S., 2002. Study of the Saldanha massif (MAR, 36º34’N): Constrains from rock magnetic and geophysical data. Marine Geophysical Research 23, 299–318.Google Scholar

  • Mitchell, N., Escartín, J. & Allerton, S., 1998. Detachment Faults at Mid-Ocean Ridges Garner Interest. Eos, Transaction American Geophysical Union 79, 127.Google Scholar

  • Morishita, T., Hara, K., Nakamura, K., Sawaguchi, T., Tamura, A., Arai, S., Okino, K., Takai, K. & Kumagai, H., 2009. Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. Journal of Petrology 50, 1299–1325.CrossrefGoogle Scholar

  • Morris, J.D. & Ryan, J.G., 2003. Subduction zone processes and implications for changing composition of the upper and lower mantle. [In:] R.W. Carlson (Ed.): Treatise on geochemistry. Vol. 2: The Mantle and Core. Elsevier, Amsterdam, 451–470.Google Scholar

  • Mudholkar, A., Kamesh Raju, K.A., Babu, E.V.S.S.K., Sreenivas, B., Vijaya Kumar, T. & Bhaskar Rao, Y.J., 2012. Oceanic core complexes along Carlsberg Ridge. International Conference: Ridges and Hotspots around the Mascarene Islands, LUX Island resort, Mauritius.Google Scholar

  • Nakamura, K., Morishita, T., Bach, W., Klein, F., Hara, K., Okino, K., Takai, K. & Kumagai, H., 2009. Serpentinized olivine-rich gabbroic rocks exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth and Planetary Science Letters 280, 128–136.Google Scholar

  • Nicolas, A., Boudier, F. & Meshi, A., 1999. Slow spreading accretion and mantle denudation in the Miridita ophiolite (Albania). Journal of Geophysical Research 104, 15155–15167.CrossrefGoogle Scholar

  • Niu, Y. & Batiza, R., 1994. Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic Ridge, Journal of Geophysical Research 99, 19719–19740.CrossrefGoogle Scholar

  • Nuriel, P., Katzir, Y., Abelson, M., Valley, J.W., Matthews, A., Spicuzza, M.J. & Ayalon, A., 2009. Fault-related oceanic serpentinization in the Troodos ophiolite, Cyprus: Implications for a fossil oceanic core complex. Earth and Planetary Science Letters 282, 34–46.Google Scholar

  • Ohara, Y., Yoshida, T., Kato, Y. & Kasuga, S., 2001. Giant megamullion in the Parece Vela backarc basin. Marine Geophysical Researches 22, 47–61.CrossrefGoogle Scholar

  • Ohara, Y., Okino, K., Snow, J.E. & KR03-01 Shipboard Scientific Party, 2003a. Preliminary report of Kairei KR03-01 cruise: amagmatic tectonics and lithospheric composition of the Parece Vela Basin. Interridge News 12, 27–29.Google Scholar

  • Ohara, Y., Fujioka, K., Ishii, T. & Yurimoto, H., 2003b. Peridotites and gabbros from the Parece Vela backarc basin: unique tectonic window in an extinct backarc spreading ridge. Geochemistry, Geophysics, Geosystems 4, 8611.Google Scholar

  • Okino, K., Matsuda, K., Christie, D.M., Nogi, Y. & Koizumi, K., 2004. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance. Geochemistry, Geophysics, Geosystems 5, Q12012.Google Scholar

  • Palmer, J., Sempere, J.-C., Christie, D.M. & Morgan, J.P., 1993. Morphology and tectonics of the Australian-Antarctic Discordance between 123°E and 128°E. Marine Geophysical Researches 15, 121–152.CrossrefGoogle Scholar

  • Palmiotto, C., Corda, L., Ligi, M., Cipriani, A., Dick, H.J.B., Douville, E., Gasperini, L., Montagna, P., Thil, F., Bosetti, A.M., Balestra, B. & Bonatti, E., 2013. Nonvolcanic tectonic islands in ancient and modern oceans. Geochemistry, Geophysics, Geosystems 14, 4698–4717.CrossrefGoogle Scholar

  • Parkinson, I.J. & Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology 39, 1577–1618.CrossrefGoogle Scholar

  • Pearson, D.G., Canil, D. & Shirey, S.B., 2003. Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. [In:] R.W. Carlson (Ed.): Treatise on geochemistry. Vol. 2: The Mantle and Core. Elsevier, Amsterdam, 171–275.Google Scholar

  • Penrose Conference Participants, 1972. Penrose Field Conference: Ophiolites. Geotimes 17, 24–25.Google Scholar

  • Petersen, S., Kuhn, K., Kuhn, T., Augustin, N., Hekinian, R., Franz L. & Borowski, C., 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112, 40–56.CrossrefGoogle Scholar

  • Planert, L., Flueh, E.R., Tilmann, F., Grevemeyer, I. & Reston, T.J., 2010. Crustal structure of a rifted oceanic core complex and its conjugate side at the MAR at 5°S: Implications for melt extraction during detachment faulting and core complex formation. Geophysical Journal International 181, 113–126.Google Scholar

  • Pyle, D.G., 1993. Geochemistry of mid-ocean ridge basalt within and surrounding the Australian Antarctic Discordance. Ph.D. thesis. Oregon State University, 178 pp.Google Scholar

  • Pyle, D.G., Christie, D.M. & Mahoney, J.J., 1992. Resolving an isotope boundary within the Australian-Antarctic Discordance. Earth and Planetary Science Letters 112, 161–178.CrossrefGoogle Scholar

  • Rampone, E., Piccardo, G. B., Vannucci, R. & Bottazzi, P., 1997. Chemistry and origin of trapped melts in ophiolitic peridotites. Geochimica et Cosmochimica Acta 41, 4557–4569.CrossrefGoogle Scholar

  • Ranero, C.R. & Reston, T.J., 1999. Detachment faulting at ocean core complexes. Geology 27, 983–986.CrossrefGoogle Scholar

  • Reston, T.J., Weinrebe, W., Grevemeyer, I., Flueh, E.R., Mitchell, N.C., Kirstein, L., Kopp, C. & Kopp, H., 2002. A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S. Earth and Planetary Science Letters 200, 255–269.Google Scholar

  • Reston, T.J., Ranero, C.R., Ruoff, O., Perez-Gussinye, M. & Danobeitia, J.J., 2004. Geometry of extensional faults developed at slow-spreading centres from seismic reflection data in the Central Atlantic (Canary Basin). Geophysical Journal International 159, 591–606.Google Scholar

  • Reves-Sohn, R. & Humphris, S., 2004. Seismicity and fluid flow of the TAG Hydrothermal Mound-4: Cruise report, STAG Leg 4. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 36 pp.Google Scholar

  • Ribeiro Da Costa, I., Barriga, F.J., Viti, C., Mellini, M. & Wicks, F.J., 2008. Antigorite in deformed serpentinites from the Mid-Atlantic Ridge. European Journal of Mineralogy 20, 563–572.CrossrefGoogle Scholar

  • Sato, T., Okino, K. & Kumagai, H. 2009. Magnetic structure of an oceanic core complex at the southernmost Central Indian Ridge: Analysis of shipboard and deep-sea three-component magnetometer data. Geochemistry, Geophysics, Geosystems, 10, Q06003.Google Scholar

  • Schroeder, T. & John, B.E., 2004. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems 5, Q06015.Google Scholar

  • Schroeder, T., Cheadle, M.J., Dick, H.J.B., Faul, U., Casey, J.F. & Kelemen, P.B., 2007. Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: A structural synthesis of ODP Leg 209. Geochemistry, Geophysics, Geosystems 8, Q06015.Google Scholar

  • Scott, H.P., Hemley, R.J., Mao, H.K., Herschbach, D.R., Fried, L.E., Howard, W.M. & Bastea, S., 2004. Generation of methane in the Earth’s mantle: In situ high pressure-temperature measurements of carbonate reduction. Proceedings of the National Academy of Sciences 101, 14023–14026.Google Scholar

  • Searle, R.C. & Bralee, A.V, 2007. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64°E, Geochemistry, Geophysics, Geosystems 8, Q015015.Google Scholar

  • Searle, R.C., Cannat, M., Fujioka, K., Mével, C., Fujimoto, H., Bralee, A. & Parson, L., 2003. FUJI Dome: A large detachment fault near 64°E on the very slow-spreading southwest Indian Ridge. Geochemistry, Geophysics, Geosystems 4, 9105.Google Scholar

  • Shipboard Scientific Party, 2003. Leg 209 Preliminary Report. Ocean Drilling Program, College Station, Texas, 100 pp.Google Scholar

  • Shipboard Scientific Party, 2005a. Expedition 304 Preliminary Report: Oceanic Core Complex Formation, Atlantis Massif. Integrated Ocean Drill. Program, College Station, Texas, 63 pp.Google Scholar

  • Shipboard Scientific Party, 2005b. Expedition 305 Preliminary Report: Oceanic Core Complex Formation, Atlantis Massif. Integrated Ocean Drill. Program, College Station, Texas, 78 pp.Google Scholar

  • Skinner, B.J., Porter, S.C. & Park, J., 2004. Dynamic Earth: An Introduction to Physical Geology. John Wiley, New Jersey, 630 pp.Google Scholar

  • Silantyev, S.A., Mironenko, M.V. & Novoselov, A.A., 2009a. Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: Downwelling limb of a hydrothermal circulation cell. Petrology, 17, 138–157.Google Scholar

  • Silantyev, S.A., Mironenko, M.V. & Novoselov, A.A, 2009b. Hydrothermal systems hosted in peridotites at slow-spreading ridges. Modeling phase transformations and material balance: Upwelling limb of the hydrothermal cell. Petrology, 17, 523–536.Google Scholar

  • Smith, D.K., Cann, J.R. & Escartín, J., 2006. Widespread active detachment faulting and core complex formation near 13° N on the Mid-Atlantic Ridge. Nature 442, 440–443.CrossrefGoogle Scholar

  • Smith, D.K., Escartín, J., Schouten, H. & Cann, J.R., 2008. Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N). Geochemistry, Geophysics, Geosystems 9, Q03003.Google Scholar

  • Smith, D.K., Escartín, J., Schouten, H. & Cann, J.R., 2012. Active long-lived faults emerging along slow-spreading mid-ocean ridges. Oceanography 25, 94–99.CrossrefGoogle Scholar

  • Smith, D.K., Schouten, H., Dick, H.J.B., Cann, J.R., Salters, V., Marschall, H.R., Ji, F., Yoerger, D., Sanfilippo, A., Parnell-Turner, R., Palmiotto, C., Zheleznov, A., Bai, H., Junkin, W., Urann, B., Dick, S., Sulanowska, M., Lemmond, P. & Curry, S., 2014. Development and evolution of detachment faulting at 50 km of the Mid-Atlantic Ridge near 16.5°N. Geochemistry, Geophysics, Geosystems 15, 4692–4711.CrossrefGoogle Scholar

  • Solomon, S.C., Huang, P.Y. & Meinke, L., 1988. The seismic moment budget of slowly spreading ridges. Nature 334, 58–60.Google Scholar

  • Suhr, G., Hellebrand, E., Johnson, K. & Brunelli, D., 2008. Stacked gabbro units and intervening mantle: A detailed look at a section of IODP Leg 305, Hole U1309D. Geochemistry, Geophysics, Geosystems 9, Q10007.Google Scholar

  • Tamura, A., Arai, S., Ishimaru, S. & Andal, E.S., 2008. Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites. Contributions to Mineralogy and Petrology 155, 491–509.Google Scholar

  • Tebbens, S.F., Cande, S.C., Kovacs, L., Parra, J.C., LaBrecque, J.L. & Vergara, H., 1997. The Chile ridge: A tectonic framework. Journal of Geophysical Research 102, 12035–12059.CrossrefGoogle Scholar

  • Thatcher, W. & Hill, D.P., 1995. A simple model for fault generated morphology of slow-spreading mid-oceanic ridges. Journal of Geophysical Research 100, 561−570.CrossrefGoogle Scholar

  • Tivey, M.A., Schouten, H. & Kleinrock, M.C. 2003. A near-bottom magnetic survey of the Mid-Atlantic Ridge axis at 26°N: Implications for the tectonic evolution of the TAG segment. Journal of Geophysical Research 108, 2277.CrossrefGoogle Scholar

  • Tremblay, A., Meshi, A. & Bedard, J.H., 2009. Oceanic core complexes and ancient oceanic lithosphere: Insight from Iapetan and Tethyan ophiolites (Canada and Albania). Tectonophysics 473, 36–52.Google Scholar

  • Tucholke, B.E. & Lin, J., 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research 99, 11937–11958.CrossrefGoogle Scholar

  • Tucholke, B.E., Lin, J. & Kleinrock, M.C., 1996. Mullions, megamullions, and metamorphic core complexes on the Mid-Atlantic Ridge. Eos, Transaction American Geophysical Union 77(46), Fall Meet. Suppl., Abstract F724.Google Scholar

  • Tucholke, B.E., Lin, J., Kleinrock, M.C., Tivey, M.A., Reed, T.B., Golf, J. & Jaroslow, G.E., 1997. Segmentation and crustal structure of the western Mid-Atlantic Ridge flank, 25°25’–27°10’N and 0–29 m.y. Journal of Geophysical Research 102, 203–223.Google Scholar

  • Tucholke, B.E., Lin, J. & Kleinrock, M.C., 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the mid-Atlantic ridge. Journal of Geophysical Research 103, 9857–9866.CrossrefGoogle Scholar

  • Tucholke, B.E., Fujioka, K., Ishihara, T., Hirth, G., & Kinoshita, M., 2001. Submersible study of an oceanic megamullion in the central North Atlantic. Journal of Geophysical Research 106, 145–161.CrossrefGoogle Scholar

  • Tucholke, B.E., Behn, M.D., Buck, R. & Lin, J., 2008. The role of melt supply in oceanic detachment faulting and formation of megamullions. Geology 36, 455–458.CrossrefGoogle Scholar

  • Tucholke, B.E., Humphris, S.E. & Dick, H.J.B., 2013. Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion: A new manifestation of hydrothermal venting. Geochemistry, Geophysics, Geosystems 14, 3352–3378.CrossrefGoogle Scholar

  • Wang, W., Chu, F., Zhu, J., Dong, Y., Yu, X., Chen, L. & Li, Z., 2013. Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites. Acta Oceanologica Sinica 32, 50–59.CrossrefGoogle Scholar

  • White, R.S., McKenzie, D. & O’Nions, R.K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research 97, 19683–19715.CrossrefGoogle Scholar

  • Whitney, D.L., Teyssier, C., Rey, P.F. & Buck, W.R., 2013. Continental and oceanic core complexes. Geological Society of America Bulletin 125, 273–298.CrossrefGoogle Scholar

  • Wilkinson, J.F.G., 1986. Classification and average chemical compositions of common basalts and andesites. Journal of Petrology 27, 31–62.CrossrefGoogle Scholar

  • Wilson, M., 1997. Igneous Petrogenesis. Springer, Dordrecht, 466 pp.Google Scholar

  • Wilson, S., 2010. Mantle source composition beneath Mid Atlantic Ridge: controls on the development of e-MORB segment and oceanic core complexes. School of Ocean and Earth Sciences, University of Southampton, PhD thesis, 392 pp.Google Scholar

  • Xu, M., Canales, J.P., Tucholke, B.E. & DuBois, D.L., 2009. Heterogeneous seismic velocity structure of the upper lithosphere at Kane oceanic core complex, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems 10, Q10001.Google Scholar

  • Yi, S.B., Oh, C.W., Pak, S.J., Kim, J., & Moon, J.W., 2014. Geochemistry and petrogenesis of mafic-ultramafic rocks from the Central Indian Ridge, latitude 8°–17° S: denudation of mantle harzburgites and gabbroic rocks and compositional variation of basalts. International Geology Review 56, 1691–1719.CrossrefGoogle Scholar

  • Yu, Z., Li, J., Liang, Y., Han, X., Zhang, J. & Zhu, L., 2013. Distribution of large-scale detachment faults on mid-ocean ridges in relation to spreading rates. Acta Oceanologica Sinica, 12, 109–117.CrossrefGoogle Scholar

  • Zhao, M., Canales, J.P. & Sohn, R.A., 2012. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N–26°20′N). Geochemistry, Geophysics, Geosystems 13, Q0AG13.Google Scholar

  • Zhao, M., Qui, X., Li, J., Sauter, D., Ruan, A., Chen, J., Cannat, M., Singh, S., Zhang, J., Wu, Z. & Niu, X, 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39’E). Geochemistry, Geophysics, Geosystems 14, 4544–4563.CrossrefGoogle Scholar

  • Zhou, H., 2015. Regional geology of active Dragon Hydrothermal Field, Southwest Indian Ridge. IODP workshop: Indian ocean crust & mantle drilling, Woods Hole, MA, USA, May 13–16, 2015.Google Scholar

  • Zhou, H. & Dick, H.J.B., 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494, 195–200.Google Scholar

  • Zonenshain, L.P., Kuzmin, M.I., Lisitsin, A.P., Bogdanov, Y.A. & Baranov, B.V., 1989. Tectonics of the Mid-Atlantic rift valley between the TAG and MARK areas (26–24°N): evidence for vertical tectonism. Tectonophysics 159, 1–23.Google Scholar

About the article

Received: 2014-12-15

Accepted: 2015-06-13

Published Online: 2016-01-22

Published in Print: 2015-12-01


Citation Information: Geologos, ISSN (Online) 2080-6574, DOI: https://doi.org/10.1515/logos-2015-0017.

Export Citation

© 2015 Jakub Ciazela et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
L. Y. Aranovich, N. S. Bortnikov, T. F. Zinger, S. E. Borisovskiy, V. A. Matrenichev, A. N. Pertsev, E. V. Sharkov, and S. G. Skolotnev
Petrology, 2017, Volume 25, Number 4, Page 339

Comments (0)

Please log in or register to comment.
Log in