Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

6 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.174
Source Normalized Impact per Paper (SNIP) 2015: 0.332

Open Access
Online
ISSN
0868-8257
See all formats and pricing
More options …
Volume 50, Issue 2 (Apr 2013)

Issues

Ni–Al Protective Coating of Steel Electrodes in Dc Electrolysis for Hydrogen Production / Ni–Al Pārklājuma Ietekme Uz Tērauda Elektrodiem Līdzstrāvas Elektrolīzē Ūdeņraža Ražošanai

P. Aizpurietis
  • Corresponding author
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Vanags
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Kleperis
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Bajars
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-22 | DOI: https://doi.org/10.2478/lpts-2013-0012

Hydrogen can be a good alternative to fossil fuels under the conditions of world's crisis as an effective energy carrier derived from renewable resources. Among all the known methods of hydrogen production, water electrolysis gives the ecologically purest hydrogen, so it is of importance to maximize the efficiency of this process. The authors consider the influence of plasma sprayed Ni-Al protective coating of 316L steel anode-cathode electrodes in DC electrolysis. In a long-term (24 h) process the anode corrodes strongly, losing Cr and Ni ions which are transferred to the electrolyte, while only minor corrosion of the cathode occurs. At the same time, the composition of anode and cathode electrodes protected by Ni-Al coating changes only slightly during a prolonged electrolysis. As the voltammetry and Tafel plots evidence, the Ni-Al coating protects both the anode and cathode from the corrosion and reduces the potential of hydrogen evolution. The results obtained show that such a coating works best in the case of steel electrodes.

Kopsavilkums

Darbā pētīts, kā līdzstrāvas elektrolīzē tērauda 316L elektrodus (anods un katods) ietekmē ar plazmas izputināšanas metodi iegūts Ni-Al pārklājums. Tikko uznestam pārklājumam ir mikrostrukturēta virsma, kas kodināšanas laikā mainās, gan pēc reljefa, gan elementu sastāva. Veicot ilgstošu (24 stundas elektrolīzi), atrasts, ka tikai tērauda elektrods anoda lomā intensīvi korodē un zaudē hroma un niķeļa jonus, kas pāriet elektrolītā, turpretī katods mainās relatīvi maz. Pārklājums Ni-Al pēc uznešanas tiek kodināts karstā sārmā, kad tiek izšķīdināta daļa sastāvā esošo elementu (Al, Si, Cd), bet ilgstošas elektrolīzes laikā pārklājuma sastāvs mainās maz gan anodam, gan katodam. Elektrodu elektroķīmiskie raksturlielumi noteikti ar voltamperometrijas un Tāfeļa līkņu analīzes metodēm. Atrasts, ka Ni-Al pārklājums aizsargā gan anodu, gan katodu no korozijas un samazina ūdeņraža izdalīšanās potenciālu, lai gan ilgstošas elektrolīzes laikā katoda pārklājumā parādās plaisas. No iegūtajiem rezultātiem ieteikts reālai elektrolīzes šūnai par anodu un katodu izmantot tēraudu, kas pārklāts ar plazmas izputināšanas metodē iegūtu Ni-Al aizsargpārklājumu.

Keywords : DC electrolysis; steel; Ni-Al coating; Tafel plot

  • 1. Hoffmann, P. (2012). Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospectsfor a Cleaner Planet. MIT Press, p. 367.Google Scholar

  • 2. Engelhardt, V. (2010). The Electrolysis of Water: Processes and Applications. Nabu Press, p. 162Google Scholar

  • 3. Brown, A.P., Krumpelt, M., Loutfy, R.O., & Yao, N.P. (1982). The effect of surface roughness on the hydrogen evolution reaction kinetics with mild steel and nickel cathodes. Electrochimica Acta, 27, 557-560Google Scholar

  • 4. Behzadian, B., Piron, D.L., Fan, C., & Lessard, J. (1991). Electrocatalytic effect on hydrogen evolution from copper materials plated from a chloride-containing bath. Int. J. Hydrogen Energy, 16, 791-796Google Scholar

  • 5. Dolgikh, O.V., Kravtsova, Yu.G., & Sotskaya, N.V. (2010). The effect of composition of electrodeposited Ni-P alloys on the hydrogen evolution rate. Russian J. Electrochem. 46, 918-924Google Scholar

  • 6. Schiller, G., & Borck, V. (1992). Vacuum plasma sprayed electrodes for advanced alkaline water electrolysis. Int. J. Hydrogen Energy, 17, 261-273Google Scholar

  • 7. Starosta, R. (2009). Properties of thermal spraying Ni-Al alloy coatings. Adv. Mat. Sci.9, 30-40Google Scholar

  • 8. Vanags, M., Kleperis, J., Bajars, G., & Lusis, A. (2007). Water electrolysis using electrodes with modified surface/volume. J Phys.: Conf., Ser. 93012025 doi: 10.1088/1742-6596/93/1/012025.Google Scholar

  • 9. Renovation of metal spare parts with plasma jet coatings. Terpa-Serviss Ltd. http://www.terpa.lv/index.htmGoogle Scholar

  • 10. Nikiforov, A., Christensen, E., Petrushina, I., Jensen, J.O., & Bjerrum, N.J. (2012). Advanced Construction Materials for High Temperature Steam PEM Electrolysers. In:“Electrolysis”, Ch. 4 (ed-s: J. Kleperis, V. Linkov). IntechOpen, 61-86, http://dx.doi.org/10.5772/51928CrossrefGoogle Scholar

  • 11. A Review of Techniques for Electrochemical Analysis. Application Note E-4, Princeton Applied Research. Available from: http://www.princentonaappliedresearch.com/Literature/index.aspxGoogle Scholar

  • 12. Krishtalik, L.I. (1986). Charge Transfer Reactions in Electrochemical and ChemicalProcesses (1st ed-n). New York: Consultants Bureau, (Ed. U.S.A), 26-67.Google Scholar

About the article

Published Online: 2013-05-22

Published in Print: 2013-04-01


Citation Information: Latvian Journal of Physics and Technical Sciences, ISSN (Print) 0868-8257, DOI: https://doi.org/10.2478/lpts-2013-0012.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in