Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

6 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.174
Source Normalized Impact per Paper (SNIP) 2015: 0.332

Open Access
Online
ISSN
0868-8257
See all formats and pricing
More options …
Volume 50, Issue 3 (Jun 2013)

Issues

Zeolite as Material for Hydrogen Storage in Transport Applications / CEOLĪTA KĀ ŪDEŅRAŽA UZGLABĀŠANAS VIDES IZPĒTE

J. Kleperis
  • Corresponding author
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Lesnicenoks
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Grinberga
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Chikvaidze
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Klavins
  • Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-30 | DOI: https://doi.org/10.2478/lpts-2013-0020

For transport needs the hydrogen is mostly stored in a compressed (at 350-700 bars) form, while methods for its storage at lower pressures are rapidly developing. In particular, nanoporous oxides and zeolites, which do not normally absorb notable amount of hydrogen, with a small Pd additive or ion exchange demonstrate enhanced hydrogen adsorption properties. An original thermogravimetric method has been developed to study the hydrogen adsorption in zeolite, consisting of its heating in the inert gas (argon, nitrogen) flow and cooling in the hydrogen atmosphere. It is found that natural zeolite (clinoptilolite) with Mg-ion exchange possesses a high adsorption capacity for hydrogen - up to 6.2 wt%, which is explained by its encapsulation in zeolite pores. The FTIR spectra of the hydrogen-treated samples have shown new absorption bands at 2340 and 2360 cm-1.

Kopsavilkums

Mūsdienās transportlīdzekļos ūdeņradis pārsvarā tiek izmantots saspiestā veidā 350-700 bāros, taču intensīvi tiek attīstītas arī metodes uzglabāšanai zemākos spiedienos. Nanoporaini oksīdi un ceolīti parastos apstākļos absorbē nelielu ūdeņraža daudzumu, taču aktivācija ar nelielu pallādija daudzumu vai jonu apmaiņa šajos materiālos var nodrošināt ievērojamu ūdeņraža adsorbciju. Izstrādāta oriģināla termogravimetrijas metode, lai pētītu ūdeņraža adsorbciju ceolītos, kas sastāv no parauga iztīrīšanas stadijas, to sildot inertās gāzes (argona, slāpekļa) plūsmā, un dzesēšanas stadijas ūdeņraža atmosfērā. Konstatēts, ka dabiskais ceolīts (klinoptilolīts) ar iemainītiem Mg joniem uzrāda augstu ūdeņraža adsorbcijas spēju - līdz 6,2 svara%, ko var skaidrot ar ūdeņraža ieslēgšanu ceolīta porās dzesēšanas procesā. Furje infrasarkanajos spektros ar ūdeņradi apstrādātos paraugos novērota jaunas joslas 2340 un 2360 cm-1 parādīšanās

Keywords: hydrogen storage; zeolite; spillover effect; Pd/zeolite composite

  • 1. US Department of Energy (2006) Planned Program Activities for 2005-2015, website address (May 2012): http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/Google Scholar

  • 2. Dinca, M., & Long, J.R. (2008). Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites. Angew. Chem. Int. Ed., 47, 6766-6779.Web of ScienceGoogle Scholar

  • 3. Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: a review. Intern. J. of Hydrogen Energy, 32, 1121-1140.Google Scholar

  • 4. Graetz, J. (2012) Metastable Metal Hydrides for Hydrogen Storage. ISRN MaterialsScience, 2012, ID 863025; DOI:10.5402/2012/863025Google Scholar

  • 5. Van den Berg, A.W.C., & Arean, C.O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chem. Commun., 668-681.Web of ScienceGoogle Scholar

  • 6. Noejung, Park N., Choi, K., Hwang, J., Kim, D.W., Kim, D.O., & Ihm, J. (2012). Progress on first-principles-based materials design for hydrogen storage. PNAS, 7; DOI: 10.1073/pnas.1217137109CrossrefGoogle Scholar

  • 7. Xiaoming, D., Jing, L., & Erdong, W. (2010). The Study of Adsorption of Hydrogen on Zeolites. Progress in Chemistry, 22, 248-254.Google Scholar

  • 8. Langmi H.W., & McGrady, G.S. (2007). Non-hydride systems of the main group elements as hydrogen storage materials. Coord. Chem. Rev., 251, 925-935.Web of ScienceGoogle Scholar

  • 9. Broom, D.P. (2011). Hydrogen Storage Materials: The Characterisation of TheirStorage Properties. London: Springer-Verlag.Google Scholar

  • 10. Efstathiou, A.M., Borgstedt, E.R., Suib, S.L., & Bennett, C.O. (1992). Encapsulation of molecular hydrogen in ion-exchanged zeolites at 1 atm. Journal of Catalysis, 135, 135-146.Google Scholar

  • 11. Grinberga, L., Kleperis, J., Bajars, G., et. al. (2008). Estimation of hydrogen transfer mechanisms in composite materials. Solid State Ionics, 179, 42-45.Web of ScienceGoogle Scholar

  • 12. Grinberga, L., Sivars, A., Kulikova, L., Serga, V., & Kleperis, J. (2011). Catalyst activation of silica nano-based pore structure material for hydrogen storage. IOP Conf. Series: Materials Science and Engineering, Vol. 23; 012009. DOI: 10.1088/1757-899X/23/1/012009.CrossrefGoogle Scholar

  • 13. Lesnicenoks, P., Berzina, A., Grinberga, L., & Kleperis, J. (2012) Research of hydrogen storage possibility in natural zeolite. International Scientific Journal forAlternative Energy and Ecology ISJAEE, 9, 16-20.Google Scholar

  • 14. Li, G. (2005). FT-IR studies of zeolite materials: characterization and environmental applications. Dissertation, University of Iowa, http://ir.uiowa.edu/etd/96.Google Scholar

  • 15. Arean C.O., Bonelli B., Delgado M.R., & Garrone E. (2009). Hydrogen storage via physisorption: the combined role of adsorption enthalpy and entropy. Turk. J. Chem., 33, 599-606; DOI:10.3906/kim-0812-22.CrossrefGoogle Scholar

  • 16. Coudert, F.-X., Vuilleumier R., & Boutin, A. (2006). Dipole moment, hydrogen bonding and IR spectrum of confined water. Chem. Phys. Chem., 7, 2464-2473; DOI: 10.1002/cphc.200600561. CrossrefGoogle Scholar

About the article

Published Online: 2013-07-30

Published in Print: 2013-06-01


Citation Information: Latvian Journal of Physics and Technical Sciences, ISSN (Print) 0868-8257, DOI: https://doi.org/10.2478/lpts-2013-0020.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in