Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

6 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.174
Source Normalized Impact per Paper (SNIP) 2015: 0.332

Open Access
See all formats and pricing
More options …
Volume 51, Issue 6


Sail-Type Wind Turbine for Autonomous Power Supplay: Possible Use in Latvia

S. Sakipova
  • E.A.Buketov Karaganda State University, 28 Universitetskaya Str., Karaganda, 100028, KAZAKHSTAN,
  • Laboratory for Mathematical Modelling of Technological and Environmental Processes, University of Latvia, 8 Zellu Str., Riga, LV-1002, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Jakovics
  • Laboratory for Mathematical Modelling of Technological and Environmental Processes, University of Latvia, 8 Zellu Str., Riga, LV-1002, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-27 | DOI: https://doi.org/10.1515/lpts-2014-0033


Under the conditions of continuous increase in the energy consumption, sharply rising prices of basic energy products (gas, oil, coal), deterioration of environment, etc., it is of vital importance to develop methods and techniques for heat and power generation from renewables. The paper considers the possibility to use a sail-type wind turbine for autonomous power supply in Latvia, taking into account its climatic conditions. The authors discuss the problems of developing a turbine of the type that would operate efficiently at low winds, being primarily designed to supply power to small buildings and farms distant from centralized electricity networks. The authors consider aerodynamic characteristics of such a turbine and the dependence of the thrust moment of its pilot model on the airflow rate at different angles of attack. The pilot model with a changeable blade shape has been tested and shows a good performance.


Darbs veltīts vienam no atjaunojamo enerģiju veidiem - vēja enerģijai, analizētas tās izmantošanas iespējas. Vispirms īsi raksturota vēja enerģijas izmantošana pasaulē, kā arī vērtētas izmantošanas perspektīvas no inženiertehniskā un klimatisko apstākļu viedokļa. Turpinājumā raksturota situācija Latvijā, t. sk., arī vēja potenciāla pieejamība dažādos reģionos, kā arī vēja enerģijas izmantošanas efektivitāti raksturojošie lielumi. Konstatējot problēmu, rast vēja turbīnu risinājumus Latvijas apstākļiem ar maziem vidējiem vēja ātrumiem, izveidots buras tipa turbīnas modelis. Šī modeļa raksturlielumu izpēte veikta vēja tunelī Karagandas universitātē, konstatējot relatīvi labus efektivitātes rādītājus tiešai un pretējai vēja plūsmai. Izmantojot mērījumu rezultātus, ierosināti sistēmas uzlabojumi, kurus plānots pētīt turpmāk. Šādas sistēmas potenciāli var rast lietojumu tur, kur nepieciešami autonomi enerģijas avoti.

Keywords: renewable resources; wind energy potential; sail-type wind turbine; changeable blade shape; thrust force


  • 1. Bezrukih, P.P. (2010). Wind power. Directory and a methodical guide. Moscow: Energy.Google Scholar

  • 2. Abdrakhmanov, R.S. & Yakimov, F.V. (2001). The effectiveness of using wind energy sources with reduced wind speeds. Izvestiya RAN. Energy, (5), 54-57.Google Scholar

  • 3. Marin,V.P. & Sidorov, A.V. (2012). Alternative electricity is a step towards future technologies. High Tech.,13(10) Moscow: Radio Engineering, 010-019.Google Scholar

  • 4. Energy Saving Technologies. www.ppu21.ru/article/303.htmlGoogle Scholar

  • 5. Projects of the test stands energy efficiency monitoring. www.eem.lv/ESFindex.Google Scholar

  • 6. Jakovich, A., Gendelis, S., Ozolins, A. & Sakipova, S.E. (2014). Energy Efficiency and Sustainability of Low Energy Houses in Latvian Climate Conditions. Int. Conf.” Energy, Environment, Development and Economics”, 17-21 July, pp.109-114. Santorini (Greece).Google Scholar

  • 7. Glickson, D. (Jan. 2014). New Test Facility to Improve Wind Turbines Renewable Energy News & Information. http://www.renewableenergyworld.com/Google Scholar

  • 8. Alternatives in Power Engineering (Nov.19, 2013). http://www.echo.msk.ru/blog/duki21041996/Google Scholar

  • 9. World Wind Energy Association Report (2012) www.wwindea.orgGoogle Scholar

  • 10. World Wind Energy Association Report (2013) www.wwindea.orgGoogle Scholar

  • 11. Free electricity market operator in Latvian Enefit (Eesti Energia) www.enefit.lv/lv/pirma-lapaGoogle Scholar

  • 12. EBRR Renewable Development Initiative - Latvia. www.ebrdrenewables.comGoogle Scholar

  • 13. Pavluts, D. (Sept. 3, 2012). Green energy should become profitable. http://rus.delfi.lv/news/daily/versions/daniel-pavlyuts-zelenaya-energiya/Google Scholar

  • 14. Lizuma, L., Avotniece, Z., Rupainis, S. & Teilans A. (2013). Assessment of the Present and Future Offshore Wind Power Potential: A Case Study in a Target Territory of the Baltic Sea near the Latvian Coast. The Scientific World Journal, ID 126428. http://www.hindawi.com/ journals/tswj/2013/126428/Google Scholar

  • 15. Kenisarin, M.M., Kenisarin, K.M. (2009). Development of wind power engineering in the world and the prospects of its development in the CIS and Baltic countries. http: // www.bib.convdocs.orgGoogle Scholar

  • 16. Gulf of Riga-wind energy resource. GORWIND projects (2012). http://www.modlab.lv/lv/gorwind_eng.phpGoogle Scholar

  • 17. Operative information of Latvian Center for Environment, Geology and Meteorology http://www.meteo.lv/meteorologijas-operativa-informacija/?nid=459/Google Scholar

  • 18. Jakovics, A., Sakipov, S.E. et al. (2014). Development of autonomous energy supply system using a sail type wind turbine. Int. Conf.” Energy, Environment, Development and Economics”, 17-21 July, pp. 62 - 66. Santorini (Greece).Google Scholar

  • 19. Voitsekhovskii, B.V. (1980). Promising energy sources and their comparison. J. of Appl. Mechanics and Theor. Physics, (5), 118-125.Google Scholar

  • 20. Martin, O. L. Hansen, L. (2008). Aerodynamics of Wind Turbines. London: Sterling, VA.Google Scholar

  • 21. Yershina, A.K., & Kaptagai, G.A. (2011). Theory of sailing wind turbine. Intern. Journal of Applied and Fundamental Research, (6), 128-131.Google Scholar

  • 22. Sakipova, S.E., Kambarova, Zh., et al. (2013). Development of sail type wind turbine for small wind speeds. Eurasian Phys. Tech. Journal, 10(2), 20-25.Google Scholar

  • 23. Gushkin, A.A. A sail wind turbine. RF Patent № 2331794. Publ. 27.03.2011.Google Scholar

  • 24. Kashin, Y.A., Kashin, R.E. (2004). An autonomous wind power plant (AWPP) with a maximum level of conversion of wind energy. A mathematical model of the wind turbine. Bulletin of the Gomel State Techn. University, (3), 59-64. Google Scholar

About the article

Published Online: 2015-01-27

Published in Print: 2014-12-01

Citation Information: Latvian Journal of Physics and Technical Sciences, Volume 51, Issue 6, Pages 13–25, ISSN (Online) 0868-8257, DOI: https://doi.org/10.1515/lpts-2014-0033.

Export Citation

© by S. Sakipova. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

S. Sakipova, A. Jakovics, and S. Gendelis
Latvian Journal of Physics and Technical Sciences, 2016, Volume 53, Number 1

Comments (0)

Please log in or register to comment.
Log in