Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

6 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.174
Source Normalized Impact per Paper (SNIP) 2015: 0.332

Open Access
Online
ISSN
0868-8257
See all formats and pricing
More options …
Volume 52, Issue 3

Issues

Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings

A. Ozoliņš
  • Laboratory for Mathematical Modelling of Technological and Environmental Processes, University of Latvia 8 Zellu Str., Riga, LV-1002, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Jakovičs
  • Laboratory for Mathematical Modelling of Technological and Environmental Processes, University of Latvia 8 Zellu Str., Riga, LV-1002, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Gendelis
  • Laboratory for Mathematical Modelling of Technological and Environmental Processes, University of Latvia 8 Zellu Str., Riga, LV-1002, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-24 | DOI: https://doi.org/10.1515/lpts-2015-0017

Abstract

The aim of the current paper is to analyse thermal comfort and overheating risks in the low-energy buildings in a summer season under Latvian climate conditions both experimentally and numerically. An interior temperature and relative humidity are analysed under free-floating conditions. Two cases are analysed: in one case, the solar influence through the window is taken into account; in the other this influence is omitted. Three different building solutions are observed: two building structures which mainly consist of the mineral wool and wooden materials and one structure from aerated clay bricks and mineral wool. The experiments have been implemented in test stands in Riga, Latvia. The numerical simulations based on measurements obtained from test stands have been performed using software WUFI Plus. The results show that the wooden constructions have high overheating risks.

Keywords: building materials; low-energy building; summer overheating; test buildings; thermal comfort

References

  • 1. Council Directive 2010/31/EU of 19 May 2010 on the energy performance of buildings (recast). (2010). Official Journal of the European Union, L 153/13, 13-35.Google Scholar

  • 2. Schnieders, J. (2005). A first-guess passive home in southern France: Passiv- On. Retrieved on 1 March 2015, from www.maison-passive-nice.fr/documents/FirstGuess_Marseille.pdf.Google Scholar

  • 3. Schnieders, J. (2009). Passive houses in South West Europe. Darmstadt: Passivhaus Institut.Google Scholar

  • 4. Beizaee, A., Lomas, K., & Firth, S. (2013). National survey of summertime temperatures and overheating risk in English homes. Building and Environment, 65, 1-17. doi:10.1016/j.buildenv.2013.03.011.Web of ScienceCrossrefGoogle Scholar

  • 5. Mlakar, J., & Štrancar, J. (2011). Overheating in residential passive house: Solution strategies revealed and confirmed through data analysis and simulations. Energy and Buildings, 43(6), 1443-1451. doi:10.1016/j.enbuild.2011.02.008.CrossrefWeb of ScienceGoogle Scholar

  • 6. Mlakar, J., & Štrancar, J. (2013). Temperature and humidity profiles in passivehouse building blocks. Building and Environment, 60, 185-193. doi:10.1016/j.buildenv. 2012.11.018.Web of ScienceCrossrefGoogle Scholar

  • 7. Spitz, C., Mora, L., Wurtz, E., & Jay, A. (2012). Practical application of uncertainty analysis and sensitivity analysis on an experimental house. Energy and Buildings, 55, 459-470. doi:10.1016/j.enbuild.2012.08.013.Web of ScienceCrossrefGoogle Scholar

  • 8. Brun, A., Wurtz, E., Hollmuller, P., & Quenard, D. (2013). Summer comfort in a low-inertia building with a new free-cooling system. Applied Energy, 112, 338-349. doi:10.1016/j.apenergy.2013.05.052.CrossrefWeb of ScienceGoogle Scholar

  • 9. Bravo, G., & González, E. (2013). Thermal comfort in naturally ventilated spaces and under indirect evaporative passive cooling conditions in hot-humid climate. Energy and Buildings, 63, 79-86. doi:10.1016/j.enbuild.2013.03.007.CrossrefWeb of ScienceGoogle Scholar

  • 10. Katunský, D., & Lopušniak, M. (2012). Impact of shading structure on energy demand and on risk of summer overheating in a low energy building. Energy Procedia, 14, 1311-1316. doi:10.1016/j.egypro.2011.12.1094.CrossrefGoogle Scholar

  • 11. McLeod, R., Hopfe, C., & Kwan, A. (2013). An investigation into future performance and overheating risks in Passivhaus dwellings. Building and Environment, 70, 189-209. doi:10.1016/j.buildenv.2013.08.024.Web of ScienceCrossrefGoogle Scholar

  • 12. Larsen, T. S., & Jensen, R. L. (2011). Comparison of measured and calculated values for the indoor environment in one of the first Danish passive houses. In Building Simulation 2011: Proceedings of the 12th Conference on the International Building Performance Simulation Association. Sydney, Australia: IBPSA Australasia and AIRAH, 1414-1421. 57Google Scholar

  • 13. Rodrigues, L., Gillott, M., & Tetlow, D. (2013). Summer overheating potential in a lowenergy steel frame house in future climate scenarios. Sustainable Cities and Society, 7, 1-15. doi:10.1016/j.scs.2012.03.004.CrossrefGoogle Scholar

  • 14. Breesch, H., Bossaer, A., & Janssens, A. (2005). Passive cooling in a low-energy office building. Solar Energy, 79(6), 682-696. doi:10.1016/j.solener.2004.12.002.CrossrefGoogle Scholar

  • 15. Energy Efficiency Monitoring. (2015). Retrieved on 1 March 2015, from http://www.eem.lv.Google Scholar

  • 16. International Organisation for Standardisation. (2007). ISO 6946: Building components and building elements - thermal resistance and thermal transmittance - calculation method. Genève, Switzerland: International Organization for Standardization.Google Scholar

  • 17. Gendelis, S., Jakovičs, A., Nitijevskis, A., & Ratnieks, J. (2013). Comparison of different air tightness and air exchange rate measurements in very small test buildings. In 34th AIVC-3rd TightVent-2nd Cool Roofs’-1st Venticool Conference. Athens, Greece.Google Scholar

  • 18. Künzel, H. (1995). Simultaneous heat and moisture transport in building components. Stuttgart: IRB Verlag.Google Scholar

About the article

Published Online: 2015-07-24

Published in Print: 2015-06-01


Citation Information: Latvian Journal of Physics and Technical Sciences, Volume 52, Issue 3, Pages 44–57, ISSN (Online) 0868-8257, DOI: https://doi.org/10.1515/lpts-2015-0017.

Export Citation

© by A. Ozoliņš. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in